184 resultados para 3Helium polarized MRI
Resumo:
PURPOSE To evaluate and compare the costs of MRI-guided and CT-guided cervical nerve root infiltration for the minimally invasive treatment of radicular neck pain. MATERIALS AND METHODS Between September 2009 and April 2012, 22 patients (9 men, 13 women; mean age: 48.2 years) underwent MRI-guided (1.0 Tesla, Panorama HFO, Philips) single-site periradicular cervical nerve root infiltration with 40 mg triamcinolone acetonide. A further 64 patients (34 men, 30 women; mean age: 50.3 years) were treated under CT fluoroscopic guidance (Somatom Definition 64, Siemens). The mean overall costs were calculated as the sum of the prorated costs of equipment use (purchase, depreciation, maintenance, and energy costs), personnel costs and expenditure for disposables that were identified for MRI- and CT-guided procedures. Additionally, the cost of ultrasound guidance was calculated. RESULTS The mean intervention time was 24.9 min. (range: 12 - 36 min.) for MRI-guided infiltration and 19.7 min. (range: 5 - 54 min.) for CT-guided infiltration. The average total costs per patient were EUR 240 for MRI-guided interventions and EUR 124 for CT-guided interventions. These were (MRI/CT guidance) EUR 150/60 for equipment use, EUR 46/40 for personnel, and EUR 44/25 for disposables. The mean overall cost of ultrasound guidance was EUR 76. CONCLUSION Cervical nerve root infiltration using MRI guidance is still about twice as expensive as infiltration using CT guidance. However, since it does not involve radiation exposure for patients and personnel, MRI-guided nerve root infiltration may become a promising alternative to the CT-guided procedure, especially since a further price decrease is expected for MRI devices and MR-compatible disposables. In contrast, ultrasound remains the less expensive method for nerve root infiltration guidance.
Resumo:
BACKGROUND The aim of this study was to evaluate imaging-based response to standardized neoadjuvant chemotherapy (NACT) regimen by dynamic contrast-enhanced magnetic resonance mammography (DCE-MRM), whereas MR images were analyzed by an automatic computer-assisted diagnosis (CAD) system in comparison to visual evaluation. MRI findings were correlated with histopathologic response to NACT and also with the occurrence of metastases in a follow-up analysis. PATIENTS AND METHODS Fifty-four patients with invasive ductal breast carcinomas received two identical MRI examinations (before and after NACT; 1.5T, contrast medium gadoteric acid). Pre-therapeutic images were compared with post-therapeutic examinations by CAD and two blinded human observers, considering morphologic and dynamic MRI parameters as well as tumor size measurements. Imaging-assessed response to NACT was compared with histopathologically verified response. All clinical, histopathologic, and DCE-MRM parameters were correlated with the occurrence of distant metastases. RESULTS Initial and post-initial dynamic parameters significantly changed between pre- and post-therapeutic DCE-MRM. Visually evaluated DCE-MRM revealed sensitivity of 85.7%, specificity of 91.7%, and diagnostic accuracy of 87.0% in evaluating the response to NACT compared to histopathology. CAD analysis led to more false-negative findings (37.0%) compared to visual evaluation (11.1%), resulting in sensitivity of 52.4%, specificity of 100.0%, and diagnostic accuracy of 63.0%. The following dynamic MRI parameters showed significant associations to occurring metastases: Post-initial curve type before NACT (entire lesions, calculated by CAD) and post-initial curve type of the most enhancing tumor parts after NACT (calculated by CAD and manually). CONCLUSIONS In the accurate evaluation of response to neoadjuvant treatment, CAD systems can provide useful additional information due to the high specificity; however, they cannot replace visual imaging evaluation. Besides traditional prognostic factors, contrast medium-induced dynamic MRI parameters reveal significant associations to patient outcome, i.e. occurrence of distant metastases.
Resumo:
PURPOSE To evaluate the accuracy, safety, and efficacy of cervical nerve root injection therapy using magnetic resonance guidance in an open 1.0 T MRI system. METHODS Between September 2009 and April 2012, a total of 21 patients (9 men, 12 women; mean age 47.1 ± 11.1 years) underwent MR-guided cervical periradicular injection for cervical radicular pain in an open 1.0 T system. An interactive proton density-weighted turbo spin echo (PDw TSE) sequence was used for real-time guidance of the MR-compatible 20-gauge injection needle. Clinical outcome was evaluated on a verbal numeric rating scale (VNRS) before injection therapy (baseline) and at 1 week and 1, 3, and 6 months during follow-up. RESULTS All procedures were technically successful and there were no major complications. The mean preinterventional VNRS score was 7.42 and exhibited a statistically significant decrease (P < 0.001) at all follow-up time points: 3.86 ± 1.53 at 1 week, 3.21 ± 2.19 at 1 month, 2.58 ± 2.54 at 3 months, and 2.76 ± 2.63 at 6 months. At 6 months, 14.3 % of the patients reported complete resolution of radicular pain and 38.1 % each had either significant (4-8 VNRS score points) or mild (1-3 VNRS score points) relief of pain; 9.5 % experienced no pain relief. CONCLUSION Magnetic resonance fluoroscopy-guided periradicular cervical spine injection is an accurate, safe, and efficacious treatment option for patients with cervical radicular pain. The technique may be a promising alternative to fluoroscopy- or CT-guided injections of the cervical spine, especially in young patients and in patients requiring repeat injections.
Resumo:
OBJECTIVE To investigate possible leptomeningeal contrast enhancement using postcontrast fluid-attenuated inversion recovery (FLAIR) MRI as an additional marker of inflammation in patients with multiple sclerosis (MS). METHODS A cohort of 112 patients (73 women) with clinically definitive MS or a clinically isolated syndrome suggestive of CNS demyelination were included. A pathologic control group of 5 stroke patients was also examined. MRI was performed on a 3T system including FLAIR, T2-weighted, T1-weighted-contrast injection, followed by T1-weighted and FLAIR. RESULTS Of the 112 patients, 39 had an acute relapse at the time of MRI. In total, 96 contrast-enhancing lesions were identified on postcontrast T1-weighted images. The pathologic control group demonstrated the sensitivity of postcontrast FLAIR images demonstrating leptomeningeal enhancement in all cases. In contrast, only 1 out of 112 examined patients with MS showed a single area of abnormal leptomeningeal contrast enhancement. CONCLUSIONS In contrast to intraparenchymal blood-brain barrier (BBB) dysfunction that is frequently seen in patients with MS, BBB dysfunction of leptomeningeal vessels is usually not detectable in patients with early MS.
Resumo:
PURPOSE To develop a method for computing and visualizing pressure differences derived from time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and to compare pressure difference maps of patients with unrepaired and repaired aortic coarctation to young healthy volunteers. METHODS 4D flow MRI data of four patients with aortic coarctation either before or after repair (mean age 17 years, age range 3-28, one female, three males) and four young healthy volunteers without history of cardiovascular disease (mean age 24 years, age range 20-27, one female, three males) was acquired using a 1.5-T clinical MR scanner. Image analysis was performed with in-house developed image processing software. Relative pressures were computed based on the Navier-Stokes equation. RESULTS A standardized method for intuitive visualization of pressure difference maps was developed and successfully applied to all included patients and volunteers. Young healthy volunteers exhibited smooth and regular distribution of relative pressures in the thoracic aorta at mid systole with very similar distribution in all analyzed volunteers. Patients demonstrated disturbed pressures compared to volunteers. Changes included a pressure drop at the aortic isthmus in all patients, increased relative pressures in the aortic arch in patients with residual narrowing after repair, and increased relative pressures in the descending aorta in a patient after patch aortoplasty. CONCLUSIONS Pressure difference maps derived from 4D flow MRI can depict alterations of spatial pressure distribution in patients with repaired and unrepaired aortic coarctation. The technique might allow identifying pathophysiological conditions underlying complications after aortic coarctation repair.
Resumo:
OBJECTIVE We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. MATERIALS AND METHODS k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). RESULTS Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). CONCLUSION k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.
Resumo:
This paper proposed an automated 3D lumbar intervertebral disc (IVD) segmentation strategy from MRI data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based approach. After that, a three-dimensional (3D) variable-radius soft tube model of the lumbar spine column is built to guide the 3D disc segmentation. The disc segmentation is achieved as a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.
Resumo:
Purpose Ophthalmologists are confronted with a set of different image modalities to diagnose eye tumors e.g., fundus photography, CT and MRI. However, these images are often complementary and represent pathologies differently. Some aspects of tumors can only be seen in a particular modality. A fusion of modalities would improve the contextual information for diagnosis. The presented work attempts to register color fundus photography with MRI volumes. This would complement the low resolution 3D information in the MRI with high resolution 2D fundus images. Methods MRI volumes were acquired from 12 infants under the age of 5 with unilateral retinoblastoma. The contrast-enhanced T1-FLAIR sequence was performed with an isotropic resolution of less than 0.5mm. Fundus images were acquired with a RetCam camera. For healthy eyes, two landmarks were used: the optic disk and the fovea. The eyes were detected and extracted from the MRI volume using a 3D adaption of the Fast Radial Symmetry Transform (FRST). The cropped volume was automatically segmented using the Split Bregman algorithm. The optic nerve was enhanced by a Frangi vessel filter. By intersection the nerve with the retina the optic disk was found. The fovea position was estimated by constraining the position with the angle between the optic and the visual axis as well as the distance from the optic disk. The optical axis was detected automatically by fitting a parable on to the lens surface. On the fundus, the optic disk and the fovea were detected by using the method of Budai et al. Finally, the image was projected on to the segmented surface using the lens position as the camera center. In tumor affected eyes, the manually segmented tumors were used instead of the optic disk and macula for the registration. Results In all of the 12 MRI volumes that were tested the 24 eyes were found correctly, including healthy and pathological cases. In healthy eyes the optic nerve head was found in all of the tested eyes with an error of 1.08 +/- 0.37mm. A successful registration can be seen in figure 1. Conclusions The presented method is a step toward automatic fusion of modalities in ophthalmology. The combination enhances the MRI volume with higher resolution from the color fundus on the retina. Tumor treatment planning is improved by avoiding critical structures and disease progression monitoring is made easier.
Resumo:
PAMAM dendrimers functionalized with nitronyl nitroxide radicals were characterized. Quantitative determination of substitution with radicals was performed using EPR and electrochemical methods. The study of the 1H NMR relaxation of the surrounding water showed how the outer-sphere contribution to the relaxivity may be limited by the presence of the dendrimer core.
Resumo:
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.
Resumo:
The purpose of this article is to provide an overview of the possibilities for fetal magnetic resonance imaging (MRI) in the evaluation of the fetal brain. For brain pathologies, fetal MRI is usually performed when an abnormality is detected by previous prenatal ultrasound, and is, therefore, an important adjunct to ultrasound. The most commonly suspected brain pathologies referred to fetal MRI for further evaluation are ventriculomegaly, missing corpus callosum, and abnormalities of the posterior fossa. We will briefly discuss the most common indications for fetal brain MRI, as well as recent advances.
Resumo:
OBJECTIVE Cochlear implants (CIs) are standard treatment for postlingually deafened individuals and prelingually deafened children. This human cadaver study evaluated diagnostic usefulness, image quality and artifacts in 1.5T and 3T magnetic resonance (MR) brain scans after CI with a removable magnet. METHODS Three criteria (diagnostic usefulness, image quality, artifacts) were assessed at 1.5T and 3T in five cadaver heads with CI. The brain magnetic resonance scans were performed with and without the magnet in situ. The criteria were analyzed by two blinded neuroradiologists, with focus on image distortion and limitation of the diagnostic value of the acquired MR images. RESULTS MR images with the magnet in situ were all compromised by artifacts caused by the CI. After removal of the magnet, MR scans showed an unequivocal artifact reduction with significant improvement of the image quality and diagnostic usefulness, both at 1.5T and 3T. Visibility of the brain stem, cerebellopontine angle, and parieto-occipital lobe ipsilateral to the CI increased significantly after magnet removal. CONCLUSIONS The results indicate the possible advantages for 1.5T and 3T MR scanning of the brain in CI carriers with removable magnets. Our findings support use of CIs with removable magnets, especially in patients with chronic intracranial pathologies.
Resumo:
OBJECTIVE Recent advances in different MRI sequences have enabled direct visualization and targeting of the Globus pallidus internus (GPi) for DBS surgery. Modified Driven Equilibrium Fourier Transform (MDEFT) MRI sequences provide high spatial resolution and an excellent contrast of the basal ganglia with low distortion. In this study, we investigate if MDEFT sequences yield accurate and reliable targeting of the GPi and compare direct targeting based on MDEFT sequences with atlas-based targeting. METHODS 13 consecutive patients considered for bilateral GPi-DBS for dystonia or PD were included in this study. Preoperative targeting of the GPi was performed visually based on MDEFT sequences as well as by using standard atlas coordinates. Postoperative CT imaging was performed to calculate the location of the implanted leads as well as the active electrode(s). The coordinates of both visual and atlas based targets were compared. The stereotactic coordinates of the lead and active electrode(s) were calculated and projected on the segmented GPi. RESULTS On MDEFT sequences the GPi was well demarcated in most patients. Compared to atlas-based planning the mean target coordinates were located significantly more posterior. Subgroup analysis showed a significant difference in the lateral coordinate between dystonia (LAT = 19.33 ± 0.90) and PD patients (LAT = 20.67 ± 1.69). Projected on the segmented preoperative GPi the active contacts of the DBS electrode in both dystonia and PD patients were located in the inferior and posterior part of the structure corresponding to the motor part of the GPi. CONCLUSIONS MDEFT MRI sequences provide high spatial resolution and an excellent contrast enabling precise identification and direct visual targeting of the GPi. Compared to atlas-based targeting, it resulted in a significantly different mean location of our target. Furthermore, we observed a significant variability of the target among the PD and dystonia subpopulation suggesting accurate targeting for each individual patient.