225 resultados para ventricular remodeling
Resumo:
Reported effects of cyclosporin A (Sandimmun, CsA) on bone have been both contradictory and controversial. Thus, stimulation of new bone formation as well as increased mineral and matrix resorption have been observed. To investigate the response of basal mineral and matrix turnover to CsA treatment at different stages of skeletal development, comparative experiments were conducted in young growing female rats and in adults. Fifty-six young animals (study A) and 40 adults (study B) received orally either the carrier substance or 5, 15, and 30 mg/kg CsA for 30 days. The following parameters were measured: (a) total skeletal mineral content by dual energy X-ray absorptiometry (DEXA) on days 1 and 30; (b) tibial trabecular volume at day 30; (c) serum osteocalcin at 5-day intervals; (d) urinary deoxypyridinoline (Dpd) excretion (days 1, 15, and 30); and (e) plasma levels of CsA. Results can be summarized as follows: in young rats (study A), total skeletal mineral was not modified by the 5- and 15-mg/kg doses of CsA, whereas 30 mg/kg induced a significant decrease (-15%, p < 0.01). This parameter was not significantly modified in adult animals (study B) subjected to the same doses. The administration of 5 mg/kg CsA did not alter tibial trabecular volume in young rats, but 15 and 30 mg/kg significantly lowered this parameter (-16.3%, p < 0.02, and -42%, p < 0.001, respectively). In adult rats, tibial trabecular volume remained unchanged with the exception of the group receiving 30 mg/kg which exhibited significantly lower values (-28%, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
INTRODUCTION: Ruptures of the anterior cruciate ligament are being diagnosed with increasing frequency in skeletally immature individuals. It was our aim to investigate the graft remodelling process following an autologous, transphyseal reconstruction of the anterior cruciate ligament (ACL) in skeletally immature sheep. We hypothesized that the ligamentisation process in immature sheep is quicker and more complete when compared to adult sheep. MATERIALS AND METHODS: Skeletally immature sheep with an age of 4 months underwent a fully transphyseal ACL reconstruction using an autologous tendon. The animals were subsequently sacrificed at 3, 6, 12 and 24 weeks following surgery. Each group was characterised histomorphometrically, by immunostaining (VEGF, SMA), by transmission electron microscopy (TEM) and biomechanically (UFS Roboter). RESULTS: The histomorphometric analysis and presence of VEGF and SMA positive cells demonstrated a rapid return to a ligament like structure. The biomechanical analysis revealed an anteroposterior translation that was still increased even 6 months following surgery. CONCLUSION: As in adult sheep models, the remodeling of a soft tissue graft used for ACL reconstruction results in a biomechanically inferior substitute. However, the immature tissue seems to remodel faster and more complete when compared to adults.
Resumo:
OBJECTIVE: To describe a case of a focal right ventricular rupture following removal of a rib-associated telangiectatic osteosarcoma (TOS) in a dog. CASE SUMMARY: A 2-year-old spayed female mixed-breed dog, weighing 20 kg, was presented in compensated hypovolemic shock due to active bleeding into the thoracic cavity. The dog was stabilized with appropriate fluid administration. Subsequent computed tomographic examination revealed a large mineralized mass originating from the body of a rib and displacing the heart. Two days after surgical removal of this mass, focal right ventricular rupture occurred and the dog died. The mass was later identified as a TOS. NEW OR UNIQUE INFORMATION PROVIDED: Although hemothorax secondary to TOS has been described previously, this report describes for the first time, spontaneous focal right ventricular rupture as a rare complication of thoracotomy and rib resection for the removal of a rib-associated, intrathoracic TOS.
Resumo:
AIMS The aim of our study in patients with coronary artery disease (CAD) and present, or absent, myocardial ischaemia during coronary occlusion was to test whether (i) left ventricular (LV) filling pressure is influenced by the collateral circulation and, on the other hand, that (ii) its resistance to flow is directly associated with LV filling pressure. METHODS AND RESULTS In 50 patients with CAD, the following parameters were obtained before and during a 60 s balloon occlusion: LV, aortic (Pao) and coronary pressure (Poccl), flow velocity (Voccl), central venous pressure (CVP), and coronary flow velocity after coronary angioplasty (V(Ø-occl)). The following variables were determined and analysed at 10 s intervals during occlusion, and at 60 s of occlusion: LV end-diastolic pressure (LVEDP), velocity-derived (CFIv) and pressure-derived collateral flow index (CFIp), coronary collateral (Rcoll), and peripheral resistance index to flow (Rperiph). Patients with ECG signs of ischaemia during coronary occlusion (insufficient collaterals, n = 33) had higher values of LVEDP over the entire course of occlusion than those without ECG signs of ischaemia during occlusion (sufficient collaterals, n = 17). Despite no ischaemia in the latter, there was an increase in LVEDP from 20 to 60 s of occlusion. In patients with insufficient collaterals, CFIv decreased and CFIp increased during occlusion. Beyond an occlusive LVEDP > 27 mmHg, Rcoll and Rperiph increased as a function of LVEDP. CONCLUSION Recruitable collaterals are reciprocally tied to LV filling pressure during occlusion. If poorly developed, they affect it via myocardial ischaemia; if well grown, LV filling pressure still increases gradually during occlusion despite the absence of ischaemia indicating transmission of collateral perfusion pressure to the LV. With low, but not high, collateral flow, resistance to collateral as well as coronary peripheral flow is related to LV filling pressure in the high range.
Resumo:
BACKGROUND The severity of aortic regurgitation can be estimated using pressure half time (PHT) of the aortic regurgitation flow velocity, but the correlation between regurgitant fraction and PHT is weak. AIM To test the hypothesis that the association between PHT and regurgitant fraction is substantially influenced by left ventricular relaxation. METHODS In 63 patients with aortic regurgitation, subdivided into a group without (n = 22) and a group with (n = 41) left ventricular hypertrophy, regurgitant fraction was calculated using the difference between right and left ventricular cardiac outputs. Left ventricular relaxation was assessed using the early to late diastolic Doppler tissue velocity ratio of the mitral annulus (E/ADTI), the E/A ratio of mitral inflow (E/AM), and the E deceleration time (E-DT). Left ventricular hypertrophy was assessed using the M mode derived left ventricular mass index. RESULTS The overall correlation between regurgitant fraction and PHT was weak (r = 0.36, p < 0.005). In patients without left ventricular hypertrophy, there was a significant correlation between regurgitant fraction and PHT (r = 0.62, p < 0.005), but not in patients with left ventricular hypertrophy. In patients with a left ventricular relaxation abnormality (defined as E/ADTI< 1, E/AM< age corrected lower limit, E-DT >/= 220 ms), no associations between regurgitant fraction and PHT were found, whereas in patients without left ventricular relaxation abnormalities, the regurgitant fraction to PHT relations were significant (normal E/AM: r = 0.57, p = 0.02; E-DT< 220 ms: r = 0.50, p < 0.001; E/ADTI < 1: r = 0.57, p = 0.02). CONCLUSIONS Only normal left ventricular relaxation allows a significant decay of PHT with increasing aortic regurgitation severity. In abnormal relaxation, which is usually present in left ventricular hypertrophy, wide variation in prolonged backward left ventricular filling may cause dissociation between the regurgitant fraction and PHT. Thus the PHT method should only be used in the absence of left ventricular relaxation abnormalities.
Resumo:
AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.
Resumo:
The current article presents a novel physiological control algorithm for ventricular assist devices (VADs), which is inspired by the preload recruitable stroke work. This controller adapts the hydraulic power output of the VAD to the end-diastolic volume of the left ventricle. We tested this controller on a hybrid mock circulation where the left ventricular volume (LVV) is known, i.e., the problem of measuring the LVV is not addressed in the current article. Experiments were conducted to compare the response of the controller with the physiological and with the pathological circulation, with and without VAD support. A sensitivity analysis was performed to analyze the influence of the controller parameters and the influence of the quality of the LVV signal on the performance of the control algorithm. The results show that the controller induces a response similar to the physiological circulation and effectively prevents over- and underpumping, i.e., ventricular suction and backflow from the aorta to the left ventricle, respectively. The same results are obtained in the case of a disturbed LVV signal. The results presented in the current article motivate the development of a robust, long-term stable sensor to measure the LVV.
Resumo:
Recent outstanding clinical advances with new mechanical circulatory systems have led to additional strategies in the treatment of end-stage heart failure. Heart transplantation can be postponed and for certain patients even replaced by smaller implantable left ventricular assist devices (LVADs). Mechanical support of the failing left ventricle enables appropriate haemodynamic stabilization and recovery of secondary organ failure, often seen in these severely ill patients. These new devices may be of great help to bridge patients until a suitable cardiac allograft is available but are also discussed as definitive treatment for patients who do not qualify for transplantation. Main indications for LVAD implantation are bridge to recovery, bridge to transplantation or destination therapy. An LVAD may be an important tool for patients with an expected prolonged period on the waiting list, for instance those with blood group O or B, with high or low body weight and those with potentially reversible secondary organ failure and pulmonary artery hypertension. However, LVAD implantation means an additional heart operation with inherent perioperative risks and complications during the waiting period. Finally, cardiac transplantation in patients with prior implantation of an LVAD represents a surgical challenge. The care of patients after the implantation of miniaturized LVADs, such as the HeartWare® system, seems to be easier than following pulsatile devices. The explantation of such devices at the time of transplantation is technically more comfortable than after HeartMate II implantation.
Resumo:
BACKGROUND Acute cardiogenic shock after myocardial infarction is associated with high in-hospital mortality attributable to persisting low-cardiac output. The Impella-EUROSHOCK-registry evaluates the safety and efficacy of the Impella-2.5-percutaneous left-ventricular assist device in patients with cardiogenic shock after acute myocardial infarction. METHODS AND RESULTS This multicenter registry retrospectively included 120 patients (63.6±12.2 years; 81.7% male) with cardiogenic shock from acute myocardial infarction receiving temporary circulatory support with the Impella-2.5-percutaneous left-ventricular assist device. The primary end point evaluated mortality at 30 days. The secondary end point analyzed the change of plasma lactate after the institution of hemodynamic support, and the rate of early major adverse cardiac and cerebrovascular events as well as long-term survival. Thirty-day mortality was 64.2% in the study population. After Impella-2.5-percutaneous left-ventricular assist device implantation, lactate levels decreased from 5.8±5.0 mmol/L to 4.7±5.4 mmol/L (P=0.28) and 2.5±2.6 mmol/L (P=0.023) at 24 and 48 hours, respectively. Early major adverse cardiac and cerebrovascular events were reported in 18 (15%) patients. Major bleeding at the vascular access site, hemolysis, and pericardial tamponade occurred in 34 (28.6%), 9 (7.5%), and 2 (1.7%) patients, respectively. The parameters of age >65 and lactate level >3.8 mmol/L at admission were identified as predictors of 30-day mortality. After 317±526 days of follow-up, survival was 28.3%. CONCLUSIONS In patients with acute cardiogenic shock from acute myocardial infarction, Impella 2.5-treatment is feasible and results in a reduction of lactate levels, suggesting improved organ perfusion. However, 30-day mortality remains high in these patients. This likely reflects the last-resort character of Impella-2.5-application in selected patients with a poor hemodynamic profile and a greater imminent risk of death. Carefully conducted randomized controlled trials are necessary to evaluate the efficacy of Impella-2.5-support in this high-risk patient group.
Resumo:
OBJECTIVES We evaluated the feasibility and safety of epicardial substrate elimination using endocardial radiofrequency (RF) delivery in patients with scar-related ventricular tachycardia (VT). BACKGROUND Epicardial RF delivery is limited by fat or associated with bleeding, extra-cardiac damages, coronary vessels and phrenic nerve injury. Alternative ablation approaches may be desirable. METHODS Forty-six patients (18 ischemic cardiomyopathy [ICM], 13 non-ischemic dilated cardiomyopathy [NICM], 15 arrhythmogenic right ventricular cardiomyopathy [ARVC]) with sustained VT underwent combined endo- and epicardial mapping. All patients received endocardial ablation targeting local abnormal ventricular activities in the endocardium (Endo-LAVA) and epicardium (Epi-LAVA), followed by epicardial ablation if needed. RESULTS From a total of 173 endocardial ablations targeting Epi-LAVA at the facing site, 48 (28%) applications (ICM: 20/71 [28%], NICM: 3/39 [8%], ARVC: 25/63 [40%]) successfully eliminated the Epi-LAVA. Presence of Endo-LAVA, most delayed and low bipolar amplitude of Epi-LAVA, low unipolar amplitude in the facing endocardium, and Epi-LAVA within a wall thinning area at CT scan were associated with successful ablation. Endocardial ablation could abolish all Epi-LAVA in 4 ICM and 2 ARVC patients, whereas all patients with NICM required epicardial ablation. Endocardial ablation was able to eliminate Epi-LAVA at least partially in 15 (83%) ICM, 2 (13%) NICM, and 11 (73%) ARVC patients, contributing to a potential reduction in epicardial RF applications. Pericardial bleeding occurred in 4 patients with epicardial ablation. CONCLUSIONS Elimination of Epi-LAVA using endocardial RF delivery is feasible and may be used first to reduce the risk of epicardial ablation.
Resumo:
BACKGROUND -The value of standard two-dimensional transthoracic echocardiographic (TTE) parameters for risk stratification in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is controversial. METHODS AND RESULTS -We investigated the impact of right ventricular fractional area change (FAC) and tricuspid annulus plane systolic excursion (TAPSE) for prediction of major adverse cardiovascular events (MACE) defined as the occurrence of cardiac death, heart transplantation, survived sudden cardiac death, ventricular fibrillation, sustained ventricular tachycardia or arrhythmogenic syncope. Among 70 patients who fulfilled the 2010 ARVC/D Task Force Criteria and underwent baseline TTE, 37 (53%) patients experienced a MACE during a median follow-up period of 5.3 (IQR 1.8-9.8) years. Average values for FAC, TAPSE, and TAPSE indexed to body surface area (BSA) decreased over time (p=0.03 for FAC, p=0.03 for TAPSE and p=0.01 for TAPSE/BSA, each vs. baseline). In contrast, median right ventricular end-diastolic area (RVEDA) increased (p=0.001 vs. baseline). Based on the results of Kaplan-Meier estimates, the time between baseline TTE and experiencing MACE was significantly shorter for patients with FAC <23% (p<0.001), TAPSE <17mm (p=0.02) or right atrial (RA) short axis/BSA ≥25mm/m(2) (p=0.04) at baseline. A reduced FAC constituted the strongest predictor of MACE (hazard ratio 1.08 per 1% decrease; 95% confidence interval 1.04-1.12; p<0.001) on bivariable analysis. CONCLUSIONS -This long-term observational study indicates that TAPSE and dilation of right-sided cardiac chambers are associated with an increased risk for MACE in ARVC/D patients with advanced disease and a high risk for adverse events. However, FAC is the strongest echocardiographic predictor of adverse outcome in these patients. Our data advocate a role for TTE in risk stratification in patients with ARVC/D, although our results may not be generalizable to lower risk ARVC/D cohorts.
Resumo:
The role of the electrophysiologic (EP) study for risk stratification in patients with arrhythmogenic right ventricular cardiomyopathy is controversial. We investigated the role of inducible sustained monomorphic ventricular tachycardia (SMVT) for the prediction of an adverse outcome (AO), defined as the occurrence of cardiac death, heart transplantation, sudden cardiac death, ventricular fibrillation, ventricular tachycardia with hemodynamic compromise or syncope. Of 62 patients who fulfilled the 2010 Arrhythmogenic Right Ventricular Cardiomyopathy Task Force criteria and underwent an EP study, 30 (48%) experienced an adverse outcome during a median follow-up of 9.8 years. SMVT was inducible in 34 patients (55%), 22 (65%) of whom had an adverse outcome. In contrast, in 28 patients without inducible SMVT, 8 (29%) had an adverse outcome. Kaplan-Meier analysis showed an event-free survival benefit for patients without inducible SMVT (log-rank p = 0.008) with a cumulative survival free of an adverse outcome of 72% (95% confidence interval [CI] 56% to 92%) in the group without inducible SMVT compared to 26% (95% CI 14% to 50%) in the other group after 10 years. The inducibility of SMVT during the EP study (hazard ratio [HR] 2.99, 95% CI 1.23 to 7.27), nonadherence (HR 2.74, 95% CI 1.3 to 5.77), and heart failure New York Heart Association functional class II and III (HR 2.25, 95% CI 1.04 to 4.87) were associated with an adverse outcome on univariate Cox regression analysis. The inducibility of SMVT (HR 2.52, 95% CI 1.03 to 6.16, p = 0.043) and nonadherence (HR 2.34, 95% CI 1.1 to 4.99, p = 0.028) remained as significant predictors on multivariate analysis. This long-term observational data suggest that SMVT inducibility during EP study might predict an adverse outcome in patients with arrhythmogenic right ventricular cardiomyopathy, advocating a role for EP study in risk stratification.
Resumo:
BACKGROUND Local abnormal ventricular activities (LAVA) in patients with scar-related ventricular tachycardia (VT) may appear at any time during or after the far-field electrogram. Although they may be separated from the far-field signal by an isoelectric line and extend beyond the end of surface QRS, they may also appear fused or buried within the QRS. OBJECTIVE The purpose of this study was to characterize LAVA in postinfarction VT patients with respect to their anatomic locations. METHODS Thirty-one patients with postinfarction VT underwent mapping/ablation during sinus rhythm with a three-dimensional electroanatomic mapping system. From a total of 18,270 electrograms reviewed in all study subjects, 1104 LAVA (endocardium 839, epicardium 265) were identified and analyzed. RESULTS The interval from onset of QRS complex to ventricular electrogram (EGM onset) on the endocardium was significantly shorter than the epicardium (P < .001). EGM onset was shortest in the septal endocardium and longest in the inferior and lateral epicardium. There was a significant positive correlation between EGM onset and LAVA lateness as estimated by the interval from surface QRS onset to LAVA (r = 0.52, P < .001). LAVA were more frequently detected after the QRS complex in the epicardium (241/265 [91%]) than in the endocardium (551/839 [66%], P < .001). Only 43% of endocardial septal LAVA were detected after the QRS complex. CONCLUSION Lateness of LAVA is affected to a large extent by their locations. The chance of detecting late LAVA increases when electrogram onset is later. Substrate-based approach targeting delayed signals relative to the QRS complex may miss critical the arrhythmogenic substrate, particularly in the septum and other early-to-activate regions.