140 resultados para polymorphonuclear leukocyte
Resumo:
Each year about 650,000 Europeans die from stroke and a similar number lives with the sequelae of multiple sclerosis (MS). Stroke and MS differ in their etiology. Although cause and likewise clinical presentation set the two diseases apart, they share common downstream mechanisms that lead to damage and recovery. Demyelination and axonal injury are characteristics of MS but are also observed in stroke. Conversely, hallmarks of stroke, such as vascular impairment and neurodegeneration, are found in MS. However, the most conspicuous common feature is the marked neuroinflammatory response, marked by glia cell activation and immune cell influx. In MS and stroke the blood-brain barrier is disrupted allowing bone marrow-derived macrophages to invade the brain in support of the resident microglia. In addition, there is a massive invasion of auto-reactive T-cells into the brain of patients with MS. Though less pronounced a similar phenomenon is also found in ischemic lesions. Not surprisingly, the two diseases also resemble each other at the level of gene expression and the biosynthesis of other proinflammatory mediators. While MS has traditionally been considered to be an autoimmune neuroinflammatory disorder, the role of inflammation for cerebral ischemia has only been recognized later. In the case of MS the long track record as neuroinflammatory disease has paid off with respect to treatment options. There are now about a dozen of approved drugs for the treatment of MS that specifically target neuroinflammation by modulating the immune system. Interestingly, experimental work demonstrated that drugs that are in routine use to mitigate neuroinflammation in MS may also work in stroke models. Examples include Fingolimod, glatiramer acetate, and antibodies blocking the leukocyte integrin VLA-4. Moreover, therapeutic strategies that were discovered in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, turned out to be also effective in experimental stroke models. This suggests that previous achievements in MS research may be relevant for stroke. Interestingly, the converse is equally true. Concepts on the neurovascular unit that were developed in a stroke context turned out to be applicable to neuroinflammatory research in MS. Examples include work on the important role of the vascular basement membrane and the BBB for the invasion of immune cells into the brain. Furthermore, tissue plasminogen activator (tPA), the only established drug treatment in acute stroke, modulates the pathogenesis of MS. Endogenous tPA is released from endothelium and astroglia and acts on the BBB, microglia and other neuroinflammatory cells. Thus, the vascular perspective of stroke research provides important input into the mechanisms on how endothelial cells and the BBB regulate inflammation in MS, particularly the invasion of immune cells into the CNS. In the current review we will first discuss pathogenesis of both diseases and current treatment regimens and will provide a detailed overview on pathways of immune cell migration across the barriers of the CNS and the role of activated astrocytes in this process. This article is part of a Special Issue entitled: Neuro inflammation: A common denominator for stroke, multiple sclerosis and Alzheimer's disease, guest edited by Helga de Vries and Markus Swaninger.
Resumo:
BACKGROUND Cell-derived plasma microparticles (<1.5 μm) originating from various cell types have the potential to regulate thrombogenesis and inflammatory responses. The aim of this study was to test the hypothesis that microparticles generated during hepatic surgery co-regulate postoperative procoagulant and proinflammatory events. METHODS In 30 patients undergoing liver resection, plasma microparticles were isolated, quantitated, and characterized as endothelial (CD31+, CD41-), platelet (CD41+), or leukocyte (CD11b+) origin by flow cytometry and their procoagulant and proinflammatory activity was measured by immunoassays. RESULTS During liver resection, the total numbers of microparticles increased with significantly more Annexin V-positive, endothelial and platelet-derived microparticles following extended hepatectomy compared to standard and minor liver resections. After liver resection, microparticle tissue factor and procoagulant activity increased along with overall coagulation as assessed by thrombelastography. Levels of leukocyte-derived microparticles specifically increased in patients with systemic inflammation as assessed by C-reactive protein but are independent of the extent of liver resection. CONCLUSIONS Endothelial and platelet-derived microparticles are specifically elevated during liver resection, accompanied by increased procoagulant activity. Leukocyte-derived microparticles are a potential marker for systemic inflammation. Plasma microparticles may represent a specific response to surgical stress and may be an important mediator of postoperative coagulation and inflammation.
Resumo:
Telomere attrition has been linked to accelerate vascular ageing and seems to predispose for vascular disease. Our aim was to study the telomere length dynamics over time and in subsets of leukocytes from 15 patients with peripheral arterial disease (PAD). The mean telomere length in subsets of leukocytes of patients with PAD was in the normal range of age-related telomere length values from healthy individuals. However, we found significant higher telomere attrition for T-cells from patients with PAD over a time period of six months when compared to the controls. The higher telomere loss in T-cells of patients with PAD most likely reflects a higher cell turnover of this leukocyte subset, which is involved in the process of chronic inflammatory disease underlying vascular disease. Further studies are needed to confirm these data and to assess how far this T-cell telomere attrition will correlate to the extent of the disease.
Resumo:
Small chemicals like drugs tend to bind to proteins via noncovalent bonds, e.g. hydrogen bonds, salt bridges or electrostatic interactions. Some chemicals interact with other molecules than the actual target ligand, representing so-called 'off-target' activities of drugs. Such interactions are a main cause of adverse side effects to drugs and are normally classified as predictable type A reactions. Detailed analysis of drug-induced immune reactions revealed that off-target activities also affect immune receptors, such as highly polymorphic human leukocyte antigens (HLA) or T cell receptors (TCR). Such drug interactions with immune receptors may lead to T cell stimulation, resulting in clinical symptoms of delayed-type hypersensitivity. They are assigned the 'pharmacological interaction with immune receptors' (p-i) concept. Analysis of p-i has revealed that drugs bind preferentially or exclusively to distinct HLA molecules (p-i HLA) or to distinct TCR (p-i TCR). P-i reactions differ from 'conventional' off-target drug reactions as the outcome is not due to the effect on the drug-modified cells themselves, but is the consequence of reactive T cells. Hence, the complex and diverse clinical manifestations of delayed-type hypersensitivity are caused by the functional heterogeneity of T cells. In the abacavir model of p-i HLA, the drug binding to HLA may result in alteration of the presenting peptides. More importantly, the drug binding to HLA generates a drug-modified HLA, which stimulates T cells directly, like an allo-HLA. In the sulfamethoxazole model of p-i TCR, responsive T cells likely require costimulation for full T cell activation. These findings may explain the similarity of delayed-type hypersensitivity reactions to graft-versus-host disease, and how systemic viral infections increase the risk of delayed-type hypersensitivity reactions.
Resumo:
Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known patients suffering from mitochondrial neurogastrointestinal encephalomyopathy who underwent allogeneic haematopoietic stem cell transplantation between 2005 and 2011. Twenty-four patients, 11 males and 13 females, median age 25 years (range 10-41 years) treated with haematopoietic stem cell transplantation from related (n = 9) or unrelated donors (n = 15) in 15 institutions worldwide were analysed for outcome and its associated factors. Overall, 9 of 24 patients (37.5%) were alive at last follow-up with a median follow-up of these surviving patients of 1430 days. Deaths were attributed to transplant in nine (including two after a second transplant due to graft failure), and to mitochondrial neurogastrointestinal encephalomyopathy in six patients. Thymidine phosphorylase activity rose from undetectable to normal levels (median 697 nmol/h/mg protein, range 262-1285) in all survivors. Seven patients (29%) who were engrafted and living more than 2 years after transplantation, showed improvement of body mass index, gastrointestinal manifestations, and peripheral neuropathy. Univariate statistical analysis demonstrated that survival was associated with two defined pre-transplant characteristics: human leukocyte antigen match (10/10 versus <10/10) and disease characteristics (liver disease, history of gastrointestinal pseudo-obstruction or both). Allogeneic haematopoietic stem cell transplantation can restore thymidine phosphorylase enzyme function in patients with mitochondrial neurogastrointestinal encephalomyopathy and improve clinical manifestations of mitochondrial neurogastrointestinal encephalomyopathy in the long term. Allogeneic haematopoietic stem cell transplantation should be considered for selected patients with an optimal donor.