151 resultados para history of historiography
Resumo:
Little is known about the vegetation and fire history of Sardinia, and especially the long-term history of the thermo-Mediterranean belt that encompasses its entire coastal lowlands. A new sedimentary record from a coastal lake based on pollen, spores, macrofossils and microscopic charcoal analysis is used to reconstruct the vegetation and fire history in north-eastern Sardinia. During the mid-Holocene (c. 8,100–5,300 cal bp), the vegetation around Stagno di Sa Curcurica was characterised by dense Erica scoparia and E. arborea stands, which were favoured by high fire activity. Fire incidence declined and evergreen broadleaved forests of Quercus ilex expanded at the beginning of the late Holocene. We relate the observed vegetation and fire dynamics to climatic change, specifically moister and cooler summers and drier and milder winters after 5,300 cal bp. Agricultural activities occurred since the Neolithic and intensified after c. 7,000 cal bp. Around 2,750 cal bp, a further decline of fire incidence and Erica communities occurred, while Quercus ilex expanded and open-land communities became more abundant. This vegetation shift coincided with the historically documented beginning of Phoenician period, which was followed by Punic and Roman civilizations in Sardinia. The vegetational change at around 2,750 cal bp was possibly advantaged by a further shift to moister and cooler summers and drier and milder winters. Triggers for climate changes at 5,300 and 2,750 cal bp may have been gradual, orbitally-induced changes in summer and winter insolation, as well as centennial-scale atmospheric reorganizations. Open evergreen broadleaved forests persisted until the twentieth century, when they were partly substituted by widespread artificial pine plantations. Our results imply that highly flammable Erica vegetation, as reconstructed for the mid-Holocene, could re-emerge as a dominant vegetation type due to increasing drought and fire, as anticipated under global change conditions.
Resumo:
BACKGROUND/AIMS Controversies still exist regarding the evaluation of growth hormone deficiency (GHD) in childhood at the end of growth. The aim of this study was to describe the natural history of GHD in a pediatric cohort. METHODS This is a retrospective study of a cohort of pediatric patients with GHD. Cases of acquired GHD were excluded. Univariate logistic regression was used to identify predictors of GHD persisting into adulthood. RESULTS Among 63 identified patients, 47 (75%) had partial GHD at diagnosis, while 16 (25%) had complete GHD, including 5 with multiple pituitary hormone deficiencies. At final height, 50 patients underwent repeat stimulation testing; 28 (56%) recovered and 22 (44%) remained growth hormone (GH) deficient. Predictors of persisting GHD were: complete GHD at diagnosis (OR 10.1, 95% CI 2.4-42.1), pituitary stalk defect or ectopic pituitary gland on magnetic resonance imaging (OR 6.5, 95% CI 1.1-37.1), greater height gain during GH treatment (OR 1.8, 95% CI 1.0-3.3), and IGF-1 level <-2 standard deviation scores (SDS) following treatment cessation (OR 19.3, 95% CI 3.6-103.1). In the multivariate analysis, only IGF-1 level <-2 SDS (OR 13.3, 95% CI 2.3-77.3) and complete GHD (OR 6.3, 95% CI 1.2-32.8) were associated with the outcome. CONCLUSION At final height, 56% of adolescents with GHD had recovered. Complete GHD at diagnosis, low IGF-1 levels following retesting, and pituitary malformation were strong predictors of persistence of GHD.
Resumo:
PURPOSE The Geographic Atrophy Progression (GAP) study was designed to assess the rate of geographic atrophy (GA) progression and to identify prognostic factors by measuring the enlargement of the atrophic lesions using fundus autofluorescence (FAF) and color fundus photography (CFP). DESIGN Prospective, multicenter, noninterventional natural history study. PARTICIPANTS A total of 603 participants were enrolled in the study; 413 of those had gradable lesion data from FAF or CFP, and 321 had gradable lesion data from both FAF and CFP. METHODS Atrophic lesion areas were measured by FAF and CFP to assess lesion progression over time. Lesion size assessments and best-corrected visual acuity (BCVA) were conducted at screening/baseline (day 0) and at 3 follow-up visits: month 6, month 12, and month 18 (or early exit). MAIN OUTCOME MEASURES The GA lesion progression rate in disease subgroups and mean change from baseline visual acuity. RESULTS Mean (standard error) lesion size changes from baseline, determined by FAF and CFP, respectively, were 0.88 (0.1) and 0.78 (0.1) mm(2) at 6 months, 1.85 (0.1) and 1.57 (0.1) mm(2) at 12 months, and 3.14 (0.4) and 3.17 (0.5) mm(2) at 18 months. The mean change in lesion size from baseline to month 12 was significantly greater in participants who had eyes with multifocal atrophic spots compared with those with unifocal spots (P < 0.001) and those with extrafoveal lesions compared with those with foveal lesions (P = 0.001). The mean (standard deviation) decrease in visual acuity was 6.2 ± 15.6 letters for patients with image data available. Atrophic lesions with a diffuse (mean 0.95 mm(2)) or banded (mean 1.01 mm(2)) FAF pattern grew more rapidly by month 6 compared with those with the "none" (mean, 0.13 mm(2)) and focal (mean, 0.36 mm(2)) FAF patterns. CONCLUSIONS Although differences were observed in mean lesion size measurements using FAF imaging compared with CFP, the measurements were highly correlated with one another. Significant differences were found in lesion progression rates in participants stratified by hyperfluorescence pattern subtype. This large GA natural history study provides a strong foundation for future clinical trials.
Resumo:
Asteroid 2008 TC3 (approximately 4m diameter) was tracked and studied in space for approximately 19h before it impacted Earth's atmosphere, shattering at 44-36km altitude. The recovered samples (>680 individual rocks) comprise the meteorite Almahata Sitta (AhS). Approximately 50-70% of these are ureilites (ultramafic achondrites). The rest are chondrites, mainly enstatite, ordinary, and Rumuruti types. The goal of this work is to understand how fragments of so many different types of parent bodies became mixed in the same asteroid. Almahata Sitta has been classified as a polymict ureilite with an anomalously high component of foreign clasts. However, we calculate that the mass of fallen material was 0.1% of the pre-atmospheric mass of the asteroid. Based on published data for the reflectance spectrum of the asteroid and laboratory spectra of the samples, we infer that the lost material was mostly ureilitic. Therefore, 2008 TC3 probably contained only a few percent nonureilitic materials, similar to other polymict ureilites except less well consolidated. From available data for the AhS meteorite fragments, we conclude that 2008 TC3 samples essentially the same range of types of ureilitic and nonureilitic materials as other polymict ureilites. We therefore suggest that the immediate parent of 2008 TC3 was the immediate parent of all ureilitic material sampled on Earth. We trace critical stages in the evolution of that material through solar system history. Based on various types of new modeling and re-evaluation of published data, we propose the following scenario. (1) The ureilite parent body (UPB) accreted 0.5-0.6Ma after formation of calcium-aluminum-rich inclusions (CAI), beyond the ice line (outer asteroid belt). Differentiation began approximately 1Ma after CAI. (2) The UPB was catastrophically disrupted by a major impact approximately 5Ma after CAI, with selective subsets of the fragments reassembling into daughter bodies. (3) Either the UPB (before breakup), or one of its daughters (after breakup), migrated to the inner belt due to scattering by massive embryos. (4) One daughter (after forming in or migrating to the inner belt) became the parent of 2008 TC3. It developed a regolith, mostly 3.8Ga ago. Clasts of enstatite, ordinary, and Rumuruti-type chondrites were implanted by low-velocity collisions. (5) Recently, the daughter was disrupted. Fragments were injected or drifted into Earth-crossing orbits. 2008 TC3 comes from outer layers of regolith, other polymict ureilites from deeper regolith, and main group ureilites from the interior of this body. In contrast to other models that have been proposed, this model invokes a stochastic history to explain the unique diversity of foreign materials in 2008 TC3 and other polymict ureilites.
Resumo:
Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixé, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adapted Fagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.