156 resultados para adelescent idiopathic scoliosis
Resumo:
Polyspecific IgG given intravenously at high doses (IVIG) is used for immunomodulatory therapy in autoimmune diseases such as idiopathic thrombocytopenic purpura and myasthenia gravis. It is assumed that the clinical effect is brought about in part by a modulation of mononuclear phagocyte function, in particular by an inhibition of Fc receptor (FcR) mediated phagocytosis. In the present study, the effect of IVIG on FcR-mediated phagocytosis by monocytes was analysed in vitro. Since monocytes exposed to minute amounts of surface-bound IgG displayed impaired phagocytosis of IgG-coated erythrocytes (EA), the effect of IVIG was studied with mononuclear cells suspended in teflon bags in medium containing 10% autologous serum and IVIG (2-10 mg/ml). Monocytes pre-exposed to IVIG and then washed, displayed impaired ingestion of EA when compared with control cells cultured in 10% autologous serum only. The decrease in phagocytosis was observed with sheep erythrocytes treated with either rabbit IgG or bovine IgG1 and with anti-D-treated human erythrocytes. This suggests that phagocytosis via both FcR type I (FcRI) and type II (FcRII) was decreased. The impairment of phagocytosis was dependent on the presence of intact IgG and was mediated by IVIG from nulliparous donors and from multigravidae to the same extent, suggesting that alloantibodies contained in IVIG have a minor role in modulating FcR-mediated phagocytosis by monocytes. A flow cytometric analysis using anti-FcRI, FcRII and FcRII monoclonal antibodies showed that IVIG treatment upregulated FcRI expression but did not significantly alter the expression of FcRII and FcRIII.
Resumo:
NaV-b subunits associate with the NaV-a or pore-forming subunit of the voltage-dependent sodium channel and play critical roles in channel expression, voltage dependence of the channel gating, cell adhesion, signal transduction, and channel pharmacology. Five NaV-b subunits have been identified in humans, all of them implicated in many primary arrhythmia syndromes that cause sudden death or neurologic disorders, including long QT syndrome, Brugada syndrome, cardiac conduction disorders, idiopathic ventricular fibrillation, epilepsy, neurodegenerative diseases, and neuropsychiatric disorders.
Resumo:
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. METHODS IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. RESULTS iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and alpha-smooth muscle actin (alpha-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. CONCLUSION iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis.
Resumo:
Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.
Resumo:
We report two patients with microdeletions in chromosomal subdomain 15q26.1 encompassing only two genes, CHD2 and RGMA. Both patients present a distinct phenotype with intellectual disability, epilepsy, behavioral issues, truncal obesity, scoliosis and facial dysmorphism. CHD2 haploinsufficiency is known to cause intellectual disability and epilepsy, RGMA haploinsufficiency might explain truncal obesity with onset around puberty observed in our two patients.
Resumo:
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Resumo:
Lumbar spinal instability (LSI) is a common spinal disorder and can be associated with substantial disability. The concept of defining clinically relevant classifications of disease or 'target condition' is used in diagnostic research. Applying this concept to LSI we hypothesize that a set of clinical and radiological criteria can be developed to identify patients with this target condition who are at high risk of 'irreversible' decompensated LSI for whom surgery becomes the treatment of choice. In LSI, structural deterioration of the lumbar disc initiates a degenerative cascade of segmental instability. Over time, radiographic signs become visible: traction spurs, facet joint degeneration, misalignment, stenosis, olisthesis and de novo scoliosis. Ligaments, joint capsules, local and distant musculature are the functional elements of the lumbar motion segment. Influenced by non-functional factors, these functional elements allow a compensation of degeneration of the motion segment. Compensation may happen on each step of the degenerative cascade but cannot reverse it. However, compensation of LSI may lead to an alleviation or resolution of clinical symptoms. In return, the target condition of decompensation of LSI may cause the new occurrence of symptoms and pain. Functional compensation and decompensation are subject to numerous factors that can change which makes estimation of an individual's long-term prognosis difficult. Compensation and decompensation may influence radiographic signs of degeneration, e.g. the degree of misalignment and segmental angulation caused by LSI is influenced by the tonus of the local musculature. This conceptual model of compensation/decompensation may help solve the debate on functional and psychosocial factors that influence low back pain and to establish a new definition of non-specific low back pain. Individual differences of identical structural disorders could be explained by compensated or decompensated LSI leading to changes in clinical symptoms and pain. Future spine surgery will have to carefully define and measure functional aspects of LSI, e.g. to identify a point of no return where multidisciplinary interventions do not allow a re-compensation and surgery becomes the treatment of choice.
Resumo:
Membranous nephropathy is one of the most common glomerular diseases and leading causes of nephrotic syndrome in Caucasian adults. Known as a clinico-pathologic entity for over 50 years, it is defined by thickening of the glomerular capillary membrane with subepithelial immuncomplexes. Secondary forms (e. g. hepatitis B, autoimmune disease or medication-induced) are distinguished from idiopathic forms. Despite spontaneous remissions in about 30 % of cases, one third of idiopathic forms progress to end-stage renal disease after 10 years. Seminal research progress of the last decade has allowed the identification of autoantibodies directed against podocytary elements leading to secondary damage to the filtration barrier. The so-called idiopathic membranous nephropathy has thus become a prototype of autoimmune disease. The autoantibodies detectable in 70 - 80 % of cases of idiopathic membranous nephropathy are directed against the M-type phospholipase A2-receptor on the podocyte membrane and correlate with disease activity. These epochal findings influence on diagnostic and therapeutic strategies establishing a rationale for the use of B cell-directed therapy on top of optimal supportive therapy.
Resumo:
The consumption of immunoglobulins (Ig) is increasing due to better recognition of antibody deficiencies, an aging population, and new indications. This review aims to examine the various dosing regimens and research developments in the established and in some of the relevant off-label indications in Europe. The background to the current regulatory settings in Europe is provided as a backdrop for the latest developments in primary and secondary immunodeficiencies and in immunomodulatory indications. In these heterogeneous areas, clinical trials encompassing different routes of administration, varying intervals, and infusion rates are paving the way toward more individualized therapy regimens. In primary antibody deficiencies, adjustments in dosing and intervals will depend on the clinical presentation, effective IgG trough levels and IgG metabolism. Ideally, individual pharmacokinetic profiles in conjunction with the clinical phenotype could lead to highly tailored treatment. In practice, incremental dosage increases are necessary to titrate the optimal dose for more severely ill patients. Higher intravenous doses in these patients also have beneficial immunomodulatory effects beyond mere IgG replacement. Better understanding of the pharmacokinetics of Ig therapy is leading to a move away from simplistic "per kg" dosing. Defective antibody production is common in many secondary immunodeficiencies irrespective of whether the causative factor was lymphoid malignancies (established indications), certain autoimmune disorders, immunosuppressive agents, or biologics. This antibody failure, as shown by test immunization, may be amenable to treatment with replacement Ig therapy. In certain immunomodulatory settings [e.g., idiopathic thrombocytopenic purpura (ITP)], selection of patients for Ig therapy may be enhanced by relevant biomarkers in order to exclude non-responders and thus obtain higher response rates. In this review, the developments in dosing of therapeutic immunoglobulins have been limited to high and some medium priority indications such as ITP, Kawasaki' disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy, myasthenia gravis, multifocal motor neuropathy, fetal alloimmune thrombocytopenia, fetal hemolytic anemia, and dermatological diseases.
Resumo:
The hypereosinophilic syndromes are rare disorders in childhood and require extensive differential diagnostic considerations. In the last years the earlier "idiopathic HES" called syndromes could be differentiated into molecular biologically, immunophenotypically and clinically more characterized heterogeneous diseases with high therapeutic and prognostic relevance. Nowadays the term HES summarizes diseases, which go hand in hand with a local or systemic hypereosinophilia (HE) connected with an organ damage. Depending on the cause of the HE one differentiates primary/neoplastic HES (HESN) from secondary/reactive HES (HESR). The latter develops reactively in connection with allergies, parasitosis, medications, neoplasia or a clonal increase of T-lymphocytes among others. With HESN the HE results from a clonal increase of eosinophilic granulocytes. While for some subgroups of the HESN (among others FIP1L1-PDGFRA fusion gene) the administration of a tyrosine kinase inhibitor is a new and effective therapy option, glucocorticoids still represent the medication of first choice for many not PDGFRA associated variants. Different immunomodulatory drugs or cytostatic agents are necessary to allow dose reduction of glucocorticoids. The promising therapy with anti-IL-5 antibodies is still not approved in infancy, could however become a treatment option in the future. Due to the present lack of knowledge about the HES in infancy the establishment of a register should be aimed for the treatment of HES in infancy.
Resumo:
This article gives a review of the classification, diagnostic procedures and treatment of idiopathic inflammatory myopathies from a neurological point of view. The myositis syndromes can be subdivided into four groups, polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM) and necrotizing myopathy (NM), which substantially differ clinically and pathophysiologically. Myositis may also occur in association with cancer or autoimmune systemic diseases (overlap syndrome). Diagnosis of inflammatory myopathies is based on clinical symptoms, determination of creatine phosphokinase and acute phase parameters in blood (e.g. C-reactive protein and erythrocyte sedimentation rate), electromyography results and findings of magnetic resonance imaging (MRI) in muscle. A muscle biopsy is mandatory to confirm the diagnosis. High quality randomized controlled trials of treatment regimens for inflammatory myopathies are sparse; however, empirical experience indicates a clear effectiveness of immunosuppressive treatment of PM, DM and NM.
Resumo:
BACKGROUND Since recombinant human growth hormone (rhGH) became available in 1985, the spectrum of indications has broadened and the number of treated patients increased. However, long-term health-related quality of life (HRQoL) after childhood rhGH treatment has rarely been documented. We assessed HRQoL and its determinants in young adults treated with rhGH during childhood. METHODOLOGY/PRINCIPAL FINDINGS For this study, we retrospectively identified former rhGH patients in 11 centers of paediatric endocrinology, including university hospitals and private practices. We sent a questionnaire to all patients treated with rhGH for any diagnosis, who were older than 18 years, and who resided in Switzerland at time of the survey. Three hundred participants (58% of 514 eligible) returned the questionnaire. Mean age was 23 years; 56% were women; 43% had isolated growth hormone deficiency, or idiopathic short stature; 43% had associated diseases or syndromes, and 14% had growth hormone deficiency after childhood cancer. Swiss siblings of childhood cancer survivors and the German norm population served as comparison groups. HRQoL was assessed using the Short Form-36. We found that the Physical Component Summary of healthy patients with isolated growth hormone deficiency or idiopathic short stature resembled that of the control group (53.8 vs. 54.9). Patients with associated diseases or syndromes scored slightly lower (52.5), and former cancer patients scored lowest (42.6). The Mental Component Summary was similar for all groups. Lower Physical Component Summary was associated with lower educational level (coeff. -1.9). Final height was not associated with HRQoL. CONCLUSIONS/SIGNIFICANCE In conclusion, HRQoL after treatment with rhGH in childhood depended mainly on the underlying indication for rhGH treatment. Patients with isolated growth hormone deficiency/idiopathic short stature or patients with associated diseases or syndromes had HRQoL comparable to peers. Patients with growth hormone deficiency after childhood cancer were at high risk for lower HRQoL. This reflects the general impaired health of this vulnerable group, which needs long-term follow-up.
Resumo:
OBJECTIVE Precise adaptable fixation of a supracondylar humerus osteotomy with a radial/lateral external fixator to correct posttraumatic cubitus varus. INDICATIONS Acquired, posttraumatic cubitus varus as a result of a malhealed and unsatisfactorily treated supracondylar humerus fracture. Idiopathic, congenital cubitus varus (very seldom) if the child (independent of age and after complete healing) is cosmetically impaired; stability of the elbow is reduced due to malalignment (hyperextension); secondary problems and pain (e. g., irritation of the ulnar nerve) are expected or already exist; or there is an explicit wish of the child/parents (relative indication). CONTRAINDICATIONS In principle there are no contraindications provided that the indication criteria are filled. The common argument of age does not represent a contraindication in our opinion, since angular remodeling at the distal end of the humerus is practically nonexistent. SURGICAL TECHNIQUE Basically, the surgical technique of the radial external fixator is used as previously described for stabilization of complex supracondylar humeral fractures. With the patient in supine position, the arm is placed freely on an arm table. Using a 4-5 cm long skin incision along the radial, supracondylar, the extracapsular part of the distal humerus is prepared, whereby great caution regarding the radial nerve is advised. In contrast to the procedure used in radial external fixation for supracondylar humeral fracture treatment, two Schanz screws are always fixed in each fragment at a distance of 1.5-2 cm. The osteotomy must allow the fragment to freely move in all directions. The proximal and distal two Schanz screws are then connected with short 4 mm carbon or stainless steel rods. These two rods are connected with each other over another rod using the tub-to-tub technique. Now the preliminary correction according the clinical situation can be performed and the clamps are tightened. Anatomical axis and function are checked. If these are radiologically and clinically perfect, all clamps are definitively tightened; if the alignment or the function is not perfect, then further adjustments can be made. POSTOPERATIVE MANAGEMENT Due to the excellent stability, further immobilization not necessary. Immediate functional follow-up treatment performed according to pain. RESULTS Adequate healing is usually expected within 6 weeks. At this time the external fixator can be removed in the fracture clinic. Because the whole operation is performed in an extraarticular manner and the mobility of the elbow is not affected, deterioration of function has never been observed. Also regarding the cosmetic/anatomical situation, good results are expected because they were already achieved intraoperatively.
Resumo:
INTRODUCTION Distraction-based spinal growth modulation by growing rods or vertical expandable prosthetic titanium ribs (VEPTRs) is the mainstay of instrumented operative strategies to correct early onset spinal deformities. In order to objectify the benefits, it has become common sense to measure the gain in spine height by assessing T1-S1 distance on anteroposterior (AP) radiographs. However, by ignoring growth changes on vertebral levels and by limiting measurement to one plane, valuable data is missed regarding the three-dimensional (3D) effects of growth modulation. This information might be interesting when it comes to final fusion or, even more so, when the protective growing implants are removed and the spine re-exposed to physiologic forces at the end of growth. METHODS The goal of this retrospective radiographic study was to assess the growth modulating impact of year-long, distraction-based VEPTR treatment on the morphology of single vertebral bodies. We digitally measured lumbar vertebral body height (VBH) and upper endplate depth (VBD) at the time of the index procedure and at follow-up in nine patients with rib-to-ileum constructs (G1) spanning an anatomically normal lumbar spine. Nine patients with congenital thoracic scoliosis and VEPTR rib-to-rib constructs, but uninstrumented lumbar spines, served as controls (G2). All had undergone more than eight half-yearly VEPTR expansions. A Wilcoxon signed-rank test was used for statistical comparison of initial and follow-up VBH, VBD and height/depth (H/D) ratio (significance level 0.05). RESULTS The average age was 7.1 years (G1) and 5.2 year (G2, p > 0.05) at initial surgery; the average overall follow-up time was 5.5 years (p = 1). In both groups, VBH increased significantly without a significant intergroup difference. Group 1 did not show significant growth in depth, whereas VBD increased significantly in the control group. As a consequence, the H/D ratio increased significantly in group 1 whereas it remained unchanged in group 2. The growth rate for height in mm/year was 1.4 (group 1) and 1.1 (group 2, p = 0.45), and for depth, it was -0.3 and 1.1 (p < 0.05), respectively. CONCLUSIONS VEPTR growth modulating treatment alters the geometry of vertebral bodies by increasing the H/D ratio. We hypothesize that the implant-related deprivation from axial loads (stress-shielding) impairs anteroposterior growth. The biomechanical consequence of such slender vertebrae when exposed to unprotected loads in case of definitive VEPTR removal at the end of growth is uncertain.
Resumo:
BACKGROUND In some hips with cam-type femoroacetabular impingement (FAI), we observed a morphology resembling a more subtle form of slipped capital femoral epiphysis (SCFE). Theoretically, the morphology in these hips should differ from hips with a primary cam-type deformity. QUESTIONS/PURPOSES We asked if (1) head-neck offset; (2) epiphyseal angle; and (3) tilt angle differ among hips with a slip-like morphology, idiopathic cam, hips after in situ pinning of SCFE, and normal hips; and (4) what is the prevalence of a slip-like morphology among cam-type hips? METHODS We retrospectively compared the three-dimensional anatomy of hips with a slip-like morphology (29 hips), in situ pinning for SCFE (eight hips), idiopathic cam deformity (171 hips), and 30 normal hips using radial MRI arthrography. Normal hips were derived from 17 asymptomatic volunteers. All other hips were recruited from a series of 277 hips (243 patients) seen at a specialized academic hip center between 2006 and 2010. Forty-one hips with isolated pincer deformity were excluded. Thirty-six of 236 hips had a known cause of cam impingement (secondary cam), including eight hips after in situ pinning of SCFE (postslip group). The 200 hips with a primary cam were separated in hips with a slip-like morphology (combination of positive fovea sign [if the neck axis did not intersect with the fovea capitis] and a tilt angle [between the neck axis and perpendicular to the basis of the epiphysis] exceeding 4°) and hips with an idiopathic cam. We evaluated offset ratio, epiphyseal angle (angle between the neck axis and line connecting the center of the femoral head and the point where the physis meets the articular surface), and tilt angle circumferentially around the femoral head-neck axis. Prevalence of slip-like morphology was determined based on the total of 236 hips with cam deformities. RESULTS Offset ratio was decreased anterosuperiorly in idiopathic cam, slip-like, and postslip (eg, 1 o'clock position with a mean offset ranging from 0.00 to 0.14; p < 0.001 for all groups) compared with normal hips (0.25 ± 0.06 [95% confidence interval, 0.13-0.37]) and increased posteroinferiorly in slip-like (eg, 8 o'clock position, 0.5 ± 0.09 [0.32-0.68]; p < 0.001) and postslip groups (0.55 ± 0.12 [0.32-0.78]; p < 0.001) and did not differ in idiopathic cam (0.32 ± 0.09 [0.15-0.49]; p = 0.323) compared with normal (0.31 ± 0.07 [0.18-0.44]) groups. Epiphyseal angle was increased anterosuperiorly in the slip-like (eg, 1 o'clock position, 70° ± 9° [51°-88°]; p < 0.001) and postslip groups (75° ± 13° [49°-100°]; p = 0.008) and decreased in idiopathic cam (50° ± 8° [35°-65°]; p < 0.001) compared with normal hips (58° ± 8° [43°-74°]). Posteroinferiorly, epiphyseal angle was decreased in slip-like (eg, 8 o'clock position, 54° ± 10° [34°-74°]; p < 0.001) and postslip (44° ± 11° [23°-65°]; p < 0.001) groups and did not differ in idiopathic cam (76° ± 8° [61°-91°]; p = 0.099) compared with normal (73° ± 7° [59°-88°]) groups. Tilt angle increased in slip-like (eg, 2/8 o'clock position, 14° ± 8° [-1° to 30°]; p < 0.001) and postslip hips (29° ± 10° [9°-48°]; p < 0.001) and decreased in hips with idiopathic cam (-7° ± 5° [-17° to 4°]; p < 0.001) compared with normal (-1° ± 5° [-10° to 8°]) hips. The prevalence of a slip-like morphology was 12%. CONCLUSIONS The slip-like morphology is the second most frequent pathomorphology in hips with primary cam deformity. MRI arthrography of the hip allows identifying a slip-like morphology, which resembles hips after in situ pinning of SCFE and distinctly differs from hips with idiopathic cam. These results support previous studies reporting that SCFE might be a risk factor for cam-type FAI.