137 resultados para Typhus fever
Resumo:
Biosecurity is crucial for safeguarding livestock from infectious diseases. Despite the plethora of biosecurity recommendations, published scientific evidence on the effectiveness of individual biosecurity measures is limited. The objective of this study was to assess the perception of Swiss experts about the effectiveness and importance of individual on-farm biosecurity measures for cattle and swine farms (31 and 30 measures, respectively). Using a modified Delphi method, 16 Swiss livestock disease specialists (8 for each species) were interviewed. The experts were asked to rank biosecurity measures that were written on cards, by allocating a score from 0 (lowest) to 5 (highest). Experts ranked biosecurity measures based on their importance related to Swiss legislation, feasibility, as well as the effort required for implementation and the benefit of each biosecurity measure. The experts also ranked biosecurity measures based on their effectiveness in preventing an infectious agent from entering and spreading on a farm, solely based on transmission characteristics of specific pathogens. The pathogens considered by cattle experts were those causing Bluetongue (BT), Bovine Viral Diarrhea (BVD), Foot and Mouth Disease (FMD) and Infectious Bovine Rhinotracheitis (IBR). Swine experts expressed their opinion on the pathogens causing African Swine Fever (ASF), Enzootic Pneumonia (EP), Porcine Reproductive and Respiratory Syndrome (PRRS), as well as FMD. For cattle farms, biosecurity measures that improve disease awareness of farmers were ranked as both most important and most effective. For swine farms, the most important and effective measures identified were those related to animal movements. Among all single measures evaluated, education of farmers was perceived by the experts to be the most important and effective for protecting both Swiss cattle and swine farms from disease. The findings of this study provide an important basis for recommendation to farmers and policy makers.
Resumo:
The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.