140 resultados para Peripheral blood stem cell transplantation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracerebral hemorrhage (ICH), for which no effective treatment strategy is currently available, constitutes one of the most devastating forms of stroke. As a result, developing therapeutic options for ICH is of great interest to the medical community. The 3 potential therapies that have the most promise are cell replacement therapy, enhancing endogenous repair mechanisms, and utilizing various neuroprotective drugs. Replacement of damaged cells and restoration of function can be accomplished by transplantation of cells derived from different sources, such as embryonic or somatic stem cells, umbilical cord blood, and genetically modified cell lines. Early experimental data showing the benefits of cell transplantation on functional recovery after ICH have been promising. Nevertheless, several studies have focused on another therapeutic avenue, investigating novel ways to activate and direct endogenous repair mechanisms in the central nervous system, through exposure to specific neuronal growth factors or by inactivating inhibitory molecules. Lastly, neuroprotective drugs may offer an additional tool for improving neuronal survival in the perihematomal area. However, a number of scientific issues must be addressed before these experimental techniques can be translated into clinical therapy. In this review, the authors outline the recent advances in the basic science of treatment strategies for ICH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial progenitor cells (EPC) are involved in many healing processes in cardiovascular diseases and can be found in spontaneously resolving venous thrombi. The purpose of the present study was to investigate whether the therapeutic administration of EPC might enhance the resolution of venous thrombi. For this purpose, venous thrombosis was induced in the infrarenal inferior vena cava (IVC) in 28 athymic nude rats. Culture expanded EPC derived from human peripheral blood mononuclear cells were injected intravenously two and four days after thrombus induction. Recanalisation of the IVC and thrombus organisation were assessed by laser Doppler measurements of the blood flow and immunohistochemical detection of endothelialised luminal structures in the thrombus. EPC transplantation resulted in significantly enhanced thrombus neovascularisation (capillary density: 186.6 +/- 26.7/HPF vs. 78 +/- 12.3/HPF, p<0.01; area covered by capillaries: 8.9 +/- 1.7 microm(2) vs. 2.5 +/- 1.3 microm(2), p<0.01) and was accompanied by a substantial increase in intra-thrombus blood flow (perfusion ratio: 0.7 +/- 0.07 vs. 0.3 +/- 0.08, p<0.02). These results were paralleled by augmented macrophage recruitment into resolving thrombi in the animals treated with EPC (39.4 +/- 4.7/HPF vs. 11.6 +/- 1.9/HPF, p<0.01). Our data suggest that EPC transplantation might be of clinical value to facilitate venous thrombus resolution in cases where current therapeutic options have limited success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: New routes for cell transplantation into the brain need to be explored as intracerebral or intrathecal applications have a high risk to cause damage to the central nervous system. It has been hypothesized that transnasally administrated cells bypass the blood-brain barrier and migrate along the olfactory neural route into the brain and cerebrospinal fluid. Our goal is to confirm this hypothesis by transnasally administrating Wharton’s Jelly mesenchymal stem cells (WJ-MSC) and neural progenitor cells (NPC) to perinatal rats in a model of hypoxic-ischemic brain injury. STUDY DESIGN: Four-day-old Wistar rat pups, previously brain-damaged by combined hypoxic-ischemic and inflammatory insult, either received WJ-MSC or green fluorescent protein-expressing NPC: The heads of the rat pups were immobilized and 3 ml drops containing the cells (50’000 cells/ml) were placed on one nostril allowing it to be snorted. This procedure was repeated twice, alternating right to left nostril with an interval of one minute between administrations. The rat pups received a total of 600’000 cells. Animals were sacrificed 24h, 48h or 7 days after the application of the cells. Fixed brains were collected, embedded in paraffin and sectioned. RESULTS: Transplanted cells were found in the layers of the olfactory bulb (OB), the cerebral cortex, thalamus and the hippocampus. The amount of cells was highest in the OB. Animals treated with transnasally delivered stem cells showed significantly decreased gliosis compared to untreated animals. CONCLUSION: Our data show that transnasal delivery of WJ-MSC and NPC to the newborn brain after perinatal brain damage is successful. The cells not only migrate the brain, but also decrease scar formation and improve neurogenesis. Therefore, the non-invasive intranasal delivery of stem cells to the brain may be the preferred method for stem cell treatment of perinatal brain damage and should be preferred in future clinical trials.