613 resultados para Knowledge Systems


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an overview of the Mobile Data Challenge (MDC), a large-scale research initiative aimed at generating innovations around smartphone-based research, as well as community-based evaluation of mobile data analysis methodologies. First, we review the Lausanne Data Collection Campaign (LDCC), an initiative to collect unique longitudinal smartphone dataset for the MDC. Then, we introduce the Open and Dedicated Tracks of the MDC, describe the specific datasets used in each of them, discuss the key design and implementation aspects introduced in order to generate privacy-preserving and scientifically relevant mobile data resources for wider use by the research community, and summarize the main research trends found among the 100+ challenge submissions. We finalize by discussing the main lessons learned from the participation of several hundred researchers worldwide in the MDC Tracks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ever increasing popularity of apps stems from their ability to provide highly customized services to the user. The flip side is that in order to provide such services, apps need access to very sensitive private information about the user. This leads to malicious apps that collect personal user information in the background and exploit it in various ways. Studies have shown that current app vetting processes which are mainly restricted to install time verification mechanisms are incapable of detecting and preventing such attacks. We argue that the missing fundamental aspect here is a comprehensive and usable mobile privacy solution, one that not only protects the user's location information, but also other equally sensitive user data such as the user's contacts and documents. A solution that is usable by the average user who does not understand or care about the low level technical details. To bridge this gap, we propose privacy metrics that quantify low-level app accesses in terms of privacy impact and transforms them to high-level user understandable ratings. We also provide the design and architecture of our Privacy Panel app that represents the computed ratings in a graphical user-friendly format and allows the user to define policies based on them. Finally, experimental results are given to validate the scalability of the proposed solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In Richard McKinley (2010) [22], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK∗ in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of Richard McKinley (2010) [22]), we give a full proof of (c) for expansion nets with respect to LK∗, and in addition give a cut-elimination procedure internal to expansion nets – this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a justification logic with a novel constructor for evidence terms, according to which the new information itself serves as evidence for believing it. We provide a sound and complete axiomatization for belief expansion and minimal change and explain how the minimality can be graded according to the strength of reasoning. We also provide an evidential analog of the Ramsey axiom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a method that robustly combines color and feature buffers to denoise Monte Carlo renderings. On one hand, feature buffers, such as per pixel normals, textures, or depth, are effective in determining denoising filters because features are highly correlated with rendered images. Filters based solely on features, however, are prone to blurring image details that are not well represented by the features. On the other hand, color buffers represent all details, but they may be less effective to determine filters because they are contaminated by the noise that is supposed to be removed. We propose to obtain filters using a combination of color and feature buffers in an NL-means and cross-bilateral filtering framework. We determine a robust weighting of colors and features using a SURE-based error estimate. We show significant improvements in subjective and quantitative errors compared to the previous state-of-the-art. We also demonstrate adaptive sampling and space-time filtering for animations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Image denoising methods have been implemented in both spatial and transform domains. Each domain has its advantages and shortcomings, which can be complemented by each other. State-of-the-art methods like block-matching 3D filtering (BM3D) therefore combine both domains. However, implementation of such methods is not trivial. We offer a hybrid method that is surprisingly easy to implement and yet rivals BM3D in quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a user assisted technique for 3D stereo conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as constraints in an image warping framework to produce a stereo pair. By sidestepping explicit construction of a depth map, our approach is applicable to more general scenes and avoids potential artifacts of depth-image-based rendering. Our method is most suitable for scenes with large scale structures such as buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a technique for interactive rendering of diffraction effects produced by biological nanostructures such as snake skin surface gratings. Our approach uses imagery from atomic force microscopy that accurately captures the nanostructures responsible for structural coloration, that is, coloration due to wave interference, in a variety of animals. We develop a rendering technique that constructs bidirectional reflection distribution functions (BRDFs) directly from the measured data and leverages precomputation to achieve interactive performance. We demonstrate results of our approach using various shapes of the surface grating nanostructures. Finally, we evaluate the accuracy of our precomputation-based technique and compare to a reference BRDF construction technique.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this position paper, we describe the current status and plans for a Swiss National Research Infrastructure. Swiss academic and research institutions are very autonomous. While being loosely coupled, they do not rely on any centralized management entities. A coordinated national research infrastructure can only be established by federating the local resources of the individual institutions. We discuss current efforts and business models for a federated infrastructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virtualisation of cellular networks can be seen as a way to significantly reduce the complexity of processes, required nowadays to provide reliable cellular networks. The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission that is focusing on cloud computing concepts to achieve virtualisation of cellular networks. It aims at the development of a fully cloud-based mobile communication and application platform, or more specifically, it aims to investigate, implement and evaluate the technological foundations for the mobile communication system of Long Term Evolution (LTE), based on Mobile Network plus Decentralized Computing plus Smart Storage offered as one atomic service: On-Demand, Elastic and Pay-As-You-Go. This paper provides a brief overview of the MCN project and discusses the challenges that need to be solved.