140 resultados para HYPERBARIC OXYGENATION
Resumo:
UNLABELLED Obstructive sleep apnea (OSA) is a frequent syndrome characterized by intermittent hypoxemia and increased prevalence of arterial hypertension and cardiovascular morbidity. In OSA, the presence of patent foramen ovale (PFO) is associated with increased number of apneas and more severe oxygen desaturation. We hypothesized that PFO closure improves sleep-disordered breathing and, in turn, has favorable effects on vascular function and arterial blood pressure. In 40 consecutive patients with newly diagnosed OSA, we searched for PFO. After initial cardiovascular assessment, the 14 patients with PFO underwent initial device closure and the 26 without PFO served as control group. Conventional treatment for OSA was postponed for 3 months in both groups, and polysomnographic and cardiovascular examinations were repeated at the end of the follow-up period. PFO closure significantly improved the apnea-hypopnea index (ΔAHI -7.9±10.4 versus +4.7±13.1 events/h, P=0.0009, PFO closure versus control), the oxygen desaturation index (ΔODI -7.6±16.6 versus +7.6±17.0 events/h, P=0.01), and the number of patients with severe OSA decreased significantly after PFO closure (79% versus 21%, P=0.007). The following cardiovascular parameters improved significantly in the PFO closure group, although remained unchanged in controls: brachial artery flow-mediated vasodilation, carotid artery stiffness, nocturnal systolic and diastolic blood pressure (-7 mm Hg, P=0.009 and -3 mm Hg, P=0.04, respectively), blood pressure dipping, and left ventricular diastolic function. In conclusion, PFO closure in OSA patients improves sleep-disordered breathing and nocturnal oxygenation. This translates into an improvement of endothelial function and vascular stiffening, a decrease of nighttime blood pressure, restoration of the dipping pattern, and improvement of left ventricular diastolic function. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01780207.
Resumo:
Current guidelines for the treatment of hypothermic cardiocirculatory arrest recommend extracorporeal life support and rewarming, using cardiopulmonary bypass or extracorporeal membrane oxygenation circuits. Both have design-related shortcomings which may result in prolonged reperfusion time or insufficient oxygen delivery to vital organs. This article describes clear advantages of minimally invasive extracorporeal circulation systems during emergency extracorporeal life support in hypothermic arrest. The technique of minimally invasive extracorporeal circulation for reperfusion and rewarming is represented by the case of a 59-year-old patient in hypothermic cardiocirculatory arrest at 25.3°C core temperature, with multiple trauma. With femoro-femoral cannulation performed under sonographic and echocardiographic guidance, extracorporeal life support was initiated using a minimally invasive extracorporeal circulation system. Perfusing rhythm was restored at 28°C. During rewarming on the mobile circuit, trauma surveys were completed and the treatment initiated. Normothermic weaning was successful on the first attempt, trauma surgery was completed and the patient survived neurologically intact. For extracorporeal resuscitation from hypothermic arrest, minimally invasive extracorporeal circulation offers all the advantages of conventional cardiopulmonary bypass and extracorporeal membrane oxygenation systems without their shortcomings.
Resumo:
The burial of organic carbon in marine sediments removes carbon dioxide from the ocean–atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink.
Resumo:
BACKGROUND Current guidelines limit the use of high oxygen tension after return of spontaneous circulation after cardiac arrest, focusing on neurological outcome and mortality. Little is known about the impact of hyperoxia on the ischemic heart. Oxygen is frequently administered and is generally expected to be beneficial. This study seeks to assess the effects of hyperoxia on myocardia oxygenation in the presence of severe coronary artery stenosis in swine. METHODS AND RESULTS In 22 healthy pigs, we surgically attached a magnetic resonance compatible flow probe to the left anterior descending coronary artery (LAD). In 11 pigs, a hydraulic occluder was inflated distal to the flow probe. After increasing PaO2 to >300 mm Hg, LAD flow decreased in all animals. In 8 stenosed animals with a mean fractional flow reserve of 0.64±0.02, hyperoxia resulted in a significant decrease of myocardial signal intensity in oxygenation-sensitive cardiovascular magnetic resonance images of the midapical segments of the LAD territory. This was not seen in remote myocardium or in the other 8 healthy animals. The decreased signal intensity was accompanied by a decrease in circumferential strain in the same segments. Furthermore, ejection fraction, cardiac output, and oxygen extraction ratio declined in these animals. Changing PaCO2 levels did not have a significant effect on any of the parameters; however, hypercapnia seemed to nonsignificantly attenuate the hyperoxia-induced changes. CONCLUSIONS Ventilation-induced hyperoxia may decrease myocardial oxygenation and lead to ischemia in myocardium subject to severe coronary artery stenosis.
Resumo:
AIMS Propofol sedation has been shown to be safe for atrial fibrillation ablation and internal cardioverter-defibrillator implantation but its use for catheter ablation (CA) of ventricular tachycardia (VT) has yet to be evaluated. Here, we tested the hypothesis that VT ablation can be performed using propofol sedation administered by trained nurses under a cardiologist's supervision. METHODS AND RESULTS Data of 205 procedures (157 patients, 1.3 procedures/patient) undergoing CA for sustained VT under propofol sedation were analysed. The primary endpoint was change of sedation and/or discontinuation of propofol sedation due to side effects and/or haemodynamic instability. Propofol cessation was necessary in 24 of 205 procedures. These procedures (Group A; n = 24, 11.7%) were compared with those with continued propofol sedation (Group B; n = 181, 88.3%). Propofol sedation was discontinued due to hypotension (n = 22; 10.7%), insufficient oxygenation (n = 1, 0.5%), or hypersalivation (n = 1, 0.5%). Procedures in Group A were significantly longer (210 [180-260] vs. 180 [125-220] min, P = 0.005), had a lower per hour propofol rate (3.0 ± 1.2 vs. 3.8 ± 1.2 mg/kg of body weight/h, P = 0.004), and higher cumulative dose of fentanyl administered (0.15 [0.13-0.25] vs. 0.1 [0.05-0.13] mg, P < 0.001), compared with patients in Group B. Five (2.4%) adverse events occurred. CONCLUSION Sedation using propofol can be safely performed for VT ablation under the supervision of cardiologists. Close haemodynamic monitoring is required, especially in elderly patients and during lengthy procedures, which carrying a higher risk for systolic blood pressure decline.