145 resultados para Gut ischemia
Resumo:
BACKGROUND Drug-eluting balloons (DEB) may reduce infrapopliteal restenosis and reintervention rates versus percutaneous transluminal angioplasty (PTA) and improve wound healing/limb preservation. OBJECTIVES The goal of this clinical trial was to assess the efficacy and safety of IN.PACT Amphirion drug-eluting balloons (IA-DEB) compared to PTA for infrapopliteal arterial revascularization in patients with critical limb ischemia (CLI). METHODS Within a prospective, multicenter, randomized, controlled trial with independent clinical event adjudication and angiographic and wound core laboratories 358 CLI patients were randomized 2:1 to IA-DEB or PTA. The 2 coprimary efficacy endpoints through 12 months were clinically driven target lesion revascularization (CD-TLR) and late lumen loss (LLL). The primary safety endpoint through 6 months was a composite of all-cause mortality, major amputation, and CD-TLR. RESULTS Clinical characteristics were similar between the 2 groups. Significant baseline differences between the IA-DEB and PTA arms included mean lesion length (10.2 cm vs. 12.9 cm; p = 0.002), impaired inflow (40.7% vs. 28.8%; p = 0.035), and previous target limb revascularization (32.2% vs. 21.8%; p = 0.047). Primary efficacy results of IA-DEB versus PTA were CD-TLR of 9.2% versus 13.1% (p = 0.291) and LLL of 0.61 ± 0.78 mm versus 0.62 ± 0.78 mm (p = 0.950). Primary safety endpoints were 17.7% versus 15.8% (p = 0.021) and met the noninferiority hypothesis. A safety signal driven by major amputations through 12 months was observed in the IA-DEB arm versus the PTA arm (8.8% vs. 3.6%; p = 0.080). CONCLUSIONS In patients with CLI, IA-DEB had comparable efficacy to PTA. While primary safety was met, there was a trend towards an increased major amputation rate through 12 months compared to PTA. (Study of IN.PACT Amphirion™ Drug Eluting Balloon vs. Standard PTA for the Treatment of Below the Knee Critical Limb Ischemia [INPACT-DEEP]; NCT00941733).
Resumo:
UNLABELLED A high proportion of gut and bronchial neuroendocrine tumors (NETs) overexpresses somatostatin receptors, especially the sst2 subtype. It has also recently been observed that incretin receptors, namely glucagonlike peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) receptors, can be overexpressed in gut and bronchial NETs. However, because not all tumors can express these receptors in sufficient amounts, in vivo imaging with a single radioligand may not always be successful. We therefore evaluated with in vitro methods whether a cocktail of radioligands targeting these 3 receptors would improve tumor labeling. METHODS In vitro receptor autoradiography was performed on 55 NETs, comparing in each successive section of tumor the binding with a single radioligand, either (125)I-Tyr(3)-octreotide, (125)I-GLP-1(7-36)amide, or (125)I-GIP(1-30), with the binding using a cocktail of all 3 radioligands, given concomitantly under identical experimental conditions. RESULTS Using the cocktail of radioligands, all tumors without exception showed moderate to very high binding, with a receptor density corresponding to 1,000-10,000 dpm/mg of tissue; conversely, single-ligand binding, although identifying most tumors as receptor-positive, failed to detect receptors or measured only a low density of receptors below 1,000 dpm/mg in a significant number of tumors. In addition, the cocktail of radioligands always provided a homogeneous labeling of the whole tumor, whereas single radioligands occasionally showed heterogeneous labeling. CONCLUSION The study suggests that the use of a cocktail of 3 radioligands binding to somatostatin receptors, GLP-1 receptors, and GIP receptors would allow detecting virtually all NETs and labeling them homogeneously in vivo, representing a significant improvement for imaging and therapy in NETs.
Resumo:
BACKGROUND/AIMS Important characteristics of neuroendocrine neoplasms (NEN) for prognosis and therapeutic decisions are the MIB-1 proliferative index (tumor grade) and tumor stage. Moreover, these tumors express peptide hormone receptors like somatostatin and gastric inhibitory peptide (GIP) receptors which represent important established and potential future targets, respectively, for molecular imaging and radiotherapy. However, the interrelation between tumor proliferation, stage, and peptide receptor amounts has never been assessed. METHODS In 114 gastrointestinal and bronchopulmonary NEN, the proliferative rate assessed with MIB-1 immunohistochemistry and tumor stage were compared with the somatostatin type 2 receptor (sst2) and GIP receptor expression measured quantitatively with in vitro receptor autoradiography. RESULTS NEN generally showed high sst2 and GIP receptor expression. GIP receptor but not sst2 expression correlated with the MIB-1 index. GIP receptor levels gradually increased in a subset of insulinomas and nonfunctioning pancreatic NEN, and decreased in ileal and bronchopulmonary NEN with increasing MIB-1 rate. MIB-1 levels were identified, above which GIP receptor levels were consistently high or low. These MIB-1 levels were clearly different from those defining tumor grade. In grade 3 NEN, GIP receptor levels were always low, while sst2 levels were variable and sometimes extremely high. Conversely, sst2 expression correlated more frequently with tumor stage than GIP receptor expression, with metastasized NEN showing higher sst2 levels than localized tumors. CONCLUSIONS sst2, a clinically crucial molecular target, shows variable and unpredictable expression in NEN irrespective of tumor grade. Therefore, each NEN should be tested for sst2 if clinical applications with somatostatin analogs are considered. Conversely, the potential future role of GIP receptors as molecular targets in NEN may be dependent on the MIB-1 level.
Resumo:
Critical limb ischemia (CLI) represents the most severe form of peripheral arterial disease (PAD) and frequently occurs in medically frail patients. CLI patients frequently exhibit multi-segmental PAD commonly including the tibial arterial segment. Endovascular therapy has been established as first-line revascularization strategy for most CLI patients. Restenosis was reported to occur in up to more than two-thirds of CLI patients undergoing angioplasty of complex tibial arterial obstructions. Nevertheless, favorable clinical outcomes were observed for infrapopliteal angioplasty when compared with bypass surgery, despite higher patency rates for the latter. Based on these observations, infrapopliteal patency was considered to be only of secondary importance upon clinical outcomes in CLI patients. In contrast to these earlier observations, however, recent findings from two randomized clinical trials indicate that infrapopliteal patency does impact on clinical outcomes in CLI patients. The purpose of the present manuscript is to provide a critical reappraisal of the present literature on the clinical importance of tibial arterial patency in CLI patients undergoing endovascular revascularization and to discuss utility and limitations of currently available anti-restenosis technologies.
Resumo:
In this chapter the basic aspects helping to understand the microbiome in terms of quantity, diversity, complexity, function, and interaction with the host are discussed. First the nomenclature, definitions of taxa, and measures of diversity as well as methods to unravel this kingdom are outlined. A brief summary on its physiological relevance for general health and the functions exerted specifically by the microbiome is presented. Differences in the composition of the microbiome along the gastrointestinal tract and across the gut wall and its interindividual variations, enterotypes, and stability are highlighted. The reader will be familiarized with all different modulators impacting on the microbiome, namely, intrinsic and extrinsic factors. Intrinsic factors include gastrointestinal secretions (gastric acid, bile, pancreatic juice, mucus), antimicrobial peptides, motility, enteric nervous system, and host genotype. Extrinsic factors are mainly dietary choices, hygiene, stress, alcohol consumption, exercise, and medications. The second part of the chapter focuses on quantitative and qualitative changes in microbiome in liver cirrhosis. The mechanisms contributing to dysbiosis, small intestinal bacterial overgrowth, and bacterial translocation are delineated underscoring their role for the liver-gut axis.
Resumo:
Inhalation anesthesia with isoflurane is a well-established and safe method used in small laboratory animals. In most cases oxygen is used as a carrier gas for isoflurane, but room air or mixtures of oxygen with air or nitrous oxide are also being used. Anesthesia is therefore administered using different fractions of inspired oxygen (FiO2), and this may have consequences for the outcome of experiments. The aim of the present study was to investigate the influence of FiO2 on rat hind limb ischemia/reperfusion injury and to refine the used inhalation anesthesia. Male Wistar rats were subjected to 3.5 h of ischemia and 2 h of reperfusion, and divided into three groups according to FiO2 in the O2/air/isoflurane anesthesia gas mixture: 40%, 60%, and 100% O2. Normal, healthy rats were used as controls. Muscle edema and creatine kinase MM, a marker for myocyte necrosis, were significantly increased with 40% FiO2 as compared with 100% FiO2 (P<0.05). Partial pressure of oxygen, oxygen saturation, and oxyhemoglobin were significantly higher in the 100% O2 group as compared with 40% O2. No significant differences were detected for other parameters, such as the oxidative stress markers malondialdehyde and superoxide dismutase. We conclude that a refined inhalation anesthesia setting using 40% FiO2, reflecting more or less the clinical situation, leads to a more severe and more physiologically relevant reperfusion injury than higher FiO2. Oxidative stress did not correlate with FiO2 and seemed to have no influence on reperfusion injury.
Resumo:
OBJECTIVE Recent small single-center data indicate that the current hemodynamic parameters used to diagnose critical limb ischemia are insensitive. We investigated the validity of the societal guidelines-recommended hemodynamic parameters against core laboratory-adjudicated angiographic data from the multicenter IN.PACT DEEP (RandomIzed AmPhirion DEEP DEB vs StAndard PTA for the treatment of below the knee Critical limb ischemia) Trial. METHODS Of the 358 patients in the IN.PACT DEEP Trial to assess drug-eluting balloon vs standard balloon angioplasty for infrapopliteal disease, 237 had isolated infrapopliteal disease with an available ankle-brachial index (ABI), and only 40 of the latter had available toe pressure measurements. The associations between ABI, ankle pressure, and toe pressure with tibial runoff, Rutherford category, and plantar arch were examined according to the cutoff points recommended by the societal guidelines. Abnormal tibial runoff was defined as severely stenotic (≥70%) or occluded and scored as one-, two-, or three-vessel disease. A stenotic or occluded plantar arch was considered abnormal. RESULTS Only 14 of 237 patients (6%) had an ABI <0.4. Abnormal ankle pressure, defined as <50 mm Hg if Rutherford category 4 and <70 mm Hg if Rutherford category 5 or 6, was found only in 37 patients (16%). Abnormal toe pressure, defined as <30 mm Hg if Rutherford category 4 and <50 mm Hg if Rutherford category 5 or 6, was found in 24 of 40 patients (60%) with available measurements. Importantly, 29% of these 24 patients had an ABI within normal reference ranges. A univariate multinomial logistic regression found no association between the above hemodynamic parameters and the number of diseased infrapopliteal vessels. However, there was a significant paradoxic association where patients with Rutherford category 6 had higher ABI and ankle pressure than those with Rutherford category 5. Similarly, there was no association between ABI and pedal arch patency. CONCLUSIONS The current recommended hemodynamic parameters fail to identify a significant portion of patients with lower extremity ulcers and angiographically proven severe disease. Toe pressure has better sensitivity and should be considered in all patients with critical limb ischemia.
Resumo:
Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.
Resumo:
BACKGROUND Current guidelines limit the use of high oxygen tension after return of spontaneous circulation after cardiac arrest, focusing on neurological outcome and mortality. Little is known about the impact of hyperoxia on the ischemic heart. Oxygen is frequently administered and is generally expected to be beneficial. This study seeks to assess the effects of hyperoxia on myocardia oxygenation in the presence of severe coronary artery stenosis in swine. METHODS AND RESULTS In 22 healthy pigs, we surgically attached a magnetic resonance compatible flow probe to the left anterior descending coronary artery (LAD). In 11 pigs, a hydraulic occluder was inflated distal to the flow probe. After increasing PaO2 to >300 mm Hg, LAD flow decreased in all animals. In 8 stenosed animals with a mean fractional flow reserve of 0.64±0.02, hyperoxia resulted in a significant decrease of myocardial signal intensity in oxygenation-sensitive cardiovascular magnetic resonance images of the midapical segments of the LAD territory. This was not seen in remote myocardium or in the other 8 healthy animals. The decreased signal intensity was accompanied by a decrease in circumferential strain in the same segments. Furthermore, ejection fraction, cardiac output, and oxygen extraction ratio declined in these animals. Changing PaCO2 levels did not have a significant effect on any of the parameters; however, hypercapnia seemed to nonsignificantly attenuate the hyperoxia-induced changes. CONCLUSIONS Ventilation-induced hyperoxia may decrease myocardial oxygenation and lead to ischemia in myocardium subject to severe coronary artery stenosis.