18 resultados para ultrafast optics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a new ultrafast pulse reconstruction modality that is somewhat reminiscent of frequency-resolved optical gating but uses a modified setup and a conceptually different reconstruction algorithm that is derived from ptychography. Even though it is a second-order correlation scheme, it shows no time ambiguity. Moreover, the number of spectra to record is considerably smaller than in most other related schemes which, together with a robust algorithm, leads to extremely fast convergence of the reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present steady-state absorption and emission spectroscopy and femtosecond broadband photoluminescence up-conversion spectroscopy studies of the electronic relaxation of Os(dmbp)3 (Os1) and Os(bpy)2(dpp) (Os2) in ethanol, where dmbp is 4,4′-dimethyl-2,2′-biypridine, bpy is 2,2′-biypridine, and dpp is 2,3-dipyridyl pyrazine. In both cases, the steady-state phosphorescence is due to the lowest 3MLCT state, whose quantum yield we estimate to be ≤5.0 × 10–3. For Os1, the steady-state phosphorescence lifetime is 25 ns. In both complexes, the photoluminescence excitation spectra map the absorption spectrum, pointing to an excitation wavelength-independent quantum yield. The ultrafast studies revealed a short-lived (≤100 fs) fluorescence, which stems from the lowest singlet metal-to-ligand-charge-transfer (1MLCT) state and decays by intersystem crossing to the manifold of 3MLCT states. In addition, Os1 exhibits a 50 ps lived emission from an intermediate triplet state at an energy 2000 cm–1 above that of the long-lived (25 ns) phosphorescence. In Os2, the 1MLCT–3MLCT intersystem crossing is faster than that in Os1, and no emission from triplet states is observed other than the lowest one. These observations are attributed to a higher density of states or a smaller energy spacing between them compared with Os1. They highlight the importance of the energetics on the rate of intersystem crossing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traveling-wave excitation close to the speed of light implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles. Pulse-front back-tilt is considered to overcome such trade-off. Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a strong front-end imaging/focusing component.