26 resultados para toxic equivalent
Resumo:
Seventeen polycyclic aromatic hydrocarbons (PAHs) were studied in surface waters (including particulate phase) from the Chenab River, Pakistan and ranged from 289-994 and 437-1290 ng l-1 in summer and winter (2007-09), respectively. Concentrations for different ring-number PAHs followed the trend: 3-rings > 2-rings > 4-rings > 5-rings > 6-rings. The possible sources of PAHs are identified by calculating the indicative ratios; appropriating petrogenic sources of PAHs in urban and sub-urban regions with pyrogenic sources in agricultural region. Factor analysis based on principal component analysis identified the origins of PAHs from industrial activities, coal and trash burning in agricultural areas and municipal waste disposal from surrounding urban and sub-urban areas via open drains into the riverine ecosystem. Water quality guidelines and toxic equivalent factors highlighted the potential risk of low molecular weight PAHs to the aquatic life of the Chenab River. The flux estimated for PAHs contaminants from the Chenab River to the Indus River was >50 tons/year.
Resumo:
The aims of this review are to summarize the definitions, causes, and clinical course as well as the current understanding of the genetic background, mechanism of disease, and therapy of toxic epidermal necrolysis and Stevens-Johnson syndrome.
Resumo:
Prolonged ECG monitoring is standard for atrial fibrillation (AF) screening. This study investigated whether 7-day event triggered (tECG) ECG recording is equivalent to 7-day continuous Holter (cECG) ECG recording for AF screening.
Resumo:
The cause of angina in patients presenting at coronary angiography without significant coronary artery disease (CAD) has not been systematically assessed in a large prospective cohort. This study is aimed to identify the cause of angina in these patients.
Resumo:
Introduction: The Health Technology Assessment report on effectiveness, cost-effectiveness and appropriateness of homeopathy was compiled on behalf of the Swiss Federal Office for Public Health (BAG) within the framework of the 'Program of Evaluation of Complementary Medicine (PEK)'. Materials and Methods: Databases accessible by Internet were systematically searched, complemented by manual search and contacts with experts, and evaluated according to internal and external validity criteria. Results: Many high-quality investigations of pre-clinical basic research proved homeopathic high-potencies inducing regulative and specific changes in cells or living organisms. 20 of 22 systematic reviews detected at least a trend in favor of homeopathy. In our estimation 5 studies yielded results indicating clear evidence for homeopathic therapy. The evaluation of 29 studies in the domain 'Upper Respiratory Tract Infections/Allergic Reactions' showed a positive overall result in favor of homeopathy. 6 out of 7 controlled studies were at least equivalent to conventional medical interventions. 8 out of 16 placebocontrolled studies were significant in favor of homeopathy. Swiss regulations grant a high degree of safety due to product and training requirements for homeopathic physicians. Applied properly, classical homeopathy has few side-effects and the use of high-potencies is free of toxic effects. A general health-economic statement about homeopathy cannot be made from the available data. Conclusion: Taking internal and external validity criteria into account, effectiveness of homeopathy can be supported by clinical evidence and professional and adequate application be regarded as safe. Reliable statements of cost-effectiveness are not available at the moment. External and model validity will have to be taken more strongly into consideration in future studies.
Resumo:
Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.
Resumo:
The toxicity of pneumococci and endotoxin in primary cultures of rat neurons, astrocytes, and microglia and in a human astrocyte and two human glial cell lines was determined. Heat-inactivated, rough pneumococci (up to 10(8) cfu/mL) or their cell wall (up to 50 micrograms/mL) produced dose-dependent toxicity after 48 h in microglial cells and to a lesser extent in astrocytes but not in neurons. Toxicity was similar for equivalent doses of heat-inactivated organisms and pneumococcal cell wall, but time-course experiments showed significant differences between the two stimuli. Endotoxin at concentrations of up to 5 micrograms/mL did not induce significant toxicity in any of the cells. Thus, pneumococci can induce toxicity in two brain cell types, microglia and astrocytes, and the pneumococcal cell wall appears to mediate toxicity. Direct toxic effects of bacteria on brain cells may in part be responsible for brain injury during meningitis.
Resumo:
The potential health effects of inhaled engineered nanoparticles are almost unknown. To avoid and replace toxicity studies with animals, a triple cell co-culture system composed of epithelial cells, macrophages and dendritic cells was established, which simulates the most important barrier functions of the epithelial airway. Using this model, the toxic potential of titanium dioxide was assessed by measuring the production of reactive oxygen species and the release of tumour necrosis factor alpha. The intracellular localisation of titanium dioxide nanoparticles was analyzed by energy filtering transmission electron microscopy. Titanium dioxide nanoparticles were detected as single particles without membranes and in membrane-bound agglomerates. Cells incubated with titanium dioxide particles showed an elevated production of reactive oxygen species but no increase of the release of tumour necrosis factor alpha. Our in vitro model of the epithelial airway barrier offers a valuable tool to study the interaction of particles with lung cells at a nanostructural level and to investigate the toxic potential of nanoparticles.
Resumo:
BACKGROUND: Several epidemiological studies show that inhalation of particulate matter may cause increased pulmonary morbidity and mortality. Of particular interest are the ultrafine particles that are particularly toxic. In addition more and more nanoparticles are released into the environment; however, the potential health effects of these nanoparticles are yet unknown. OBJECTIVES: To avoid particle toxicity studies with animals many cell culture models have been developed during the past years. METHODS: This review focuses on the most commonly used in vitro epithelial airway and alveolar models to study particle-cell interactions and particle toxicity and highlights advantages and disadvantages of the different models. RESULTS/CONCLUSION: There are many lung cell culture models but none of these models seems to be perfect. However, they might be a great tool to perform basic research or toxicity tests. The focus here is on 3D and co-culture models, which seem to be more realistic than monocultures.