72 resultados para success models comparison
Resumo:
We evaluated the suitability of single and multiple cell type cultures as model systems to characterise cellular kinetics of highly lipophilic compounds with potential ecotoxicological impact. Confluent mono-layers of human skin fibroblasts, rat astrocytoma C6 cells, non-differentiated and differentiated mouse 3T3 cells were kept in culture medium supplemented with 10% foetal calf serum. For competitive uptake experiments up to four different cell types, grown on glass sectors, were exposed for 3h to (14)C-labelled model compounds, dissolved either in organic solvents or incorporated into unilamellar lecithin liposomes. Bromo-, or chloro-benzenes, decabromodiphenylether (DBP), and dichlorodiphenyl ethylene (DDE) were tested in rather high concentration of 20 microM. Cellular toxicity was low. Compound levels were related to protein, DNA, and triglyceride contents. Cellular uptake was fast and dependent on physico-chemical properties of the compounds (lipophilicity, molecular size), formulation, and cell type. Mono-halogenated benzenes showed low and similar uptake levels (=low accumulation compounds). DBP and DDE showed much higher cellular accumulations (=high accumulation compounds) except for DBP in 3T3 cells. Uptake from liposomal formulations was mostly higher than if compounds were dissolved in organic solvents. The extent of uptake correlated with the cellular content of triglycerides, except for DBP. Uptake competition between different cell types was studied in a sectorial multi-cell culture model. For low accumulation compounds negligible differences were found among C6 cells and fibroblasts. Uptake of DDE was slightly and that of DBP highly increased in fibroblasts. Well-defined cell culture systems, especially the sectorial model, are appropriate to screen for bioaccumulation and cytotoxicity of (unknown) chemical entities in vitro.
Resumo:
The protean and boundaryless career attitudes have gained special attention during the past years. Aprotean career attitude implies that aperson strives towards adevelopmental progression and self-fulfillment; aboundaryless career attitude is characterized by ahigh physical and/or psychological mobility. The aim of the present paper is twofold: First, we want to empirically investigate the relationship between protean and boundaryless career attitudes and subjective (i.e., career satisfaction and success in comparison with colleagues) and objective (i.e., promotions and salary) career success. Second, we want to integrate research on protean and boundaryless career attitudes with research on predictors of career success. We analyze the career attitudes-career success relationship with asample of 116 professionals. Our findings suggest that components of the protean career attitude are rather more related with subjective career success and that components of the boundaryless career attitude are more related with objective career success. Conclusions regarding the relevance of career attitudes for career success are drawn.
Resumo:
Important insights into the molecular mechanism of T cell extravasation across the blood-brain barrier (BBB) have already been obtained using immortalized mouse brain endothelioma cell lines (bEnd). However, compared with bEnd, primary brain endothelial cells have been shown to establish better barrier characteristics, including complex tight junctions and low permeability. In this study, we asked whether bEnd5 and primary mouse brain microvascular endothelial cells (pMBMECs) were equally suited as in vitro models with which to study the cellular and molecular mechanisms of T cell extravasation across the BBB. We found that both in vitro BBB models equally supported both T cell adhesion under static and physiologic flow conditions, and T cell crawling on the endothelial surface against the direction of flow. In contrast, distances of T cell crawling on pMBMECs were strikingly longer than on bEnd5, whereas diapedesis of T cells across pMBMECs was dramatically reduced compared with bEnd5. Thus, both in vitro BBB models are suited to study T cell adhesion. However, because pMBMECs better reflect endothelial BBB specialization in vivo, we propose that more reliable information about the cellular and molecular mechanisms of T cell diapedesis across the BBB can be attained using pMBMECs.
Resumo:
Chlamydia trachomatis is the most common bacterial sexually transmitted infection (STI) in many developed countries. The highest prevalence rates are found among young adults who have frequent partner change rates. Three published individual-based models have incorporated a detailed description of age-specific sexual behaviour in order to quantify the transmission of C. trachomatis in the population and to assess the impact of screening interventions. Owing to varying assumptions about sexual partnership formation and dissolution and the great uncertainty about critical parameters, such models show conflicting results about the impact of preventive interventions. Here, we perform a detailed evaluation of these models by comparing the partnership formation and dissolution dynamics with data from Natsal 2000, a population-based probability sample survey of sexual attitudes and lifestyles in Britain. The data also allow us to describe the dispersion of C. trachomatis infections as a function of sexual behaviour, using the Gini coefficient. We suggest that the Gini coefficient is a useful measure for calibrating infectious disease models that include risk structure and highlight the need to estimate this measure for other STIs.
Resumo:
Various pharmacodynamic response surface models have been developed to quantitatively describe the relationship between two or more drug concentrations with their combined clinical effect. We examined the interaction of remifentanil and sevoflurane on the probability of tolerance to shake and shout, tetanic stimulation, laryngeal mask airway insertion, and laryngoscopy in patients to compare the performance of five different response surface models.
Resumo:
OBJECTIVE: Meta-analysis of studies of the accuracy of diagnostic tests currently uses a variety of methods. Statistically rigorous hierarchical models require expertise and sophisticated software. We assessed whether any of the simpler methods can in practice give adequately accurate and reliable results. STUDY DESIGN AND SETTING: We reviewed six methods for meta-analysis of diagnostic accuracy: four simple commonly used methods (simple pooling, separate random-effects meta-analyses of sensitivity and specificity, separate meta-analyses of positive and negative likelihood ratios, and the Littenberg-Moses summary receiver operating characteristic [ROC] curve) and two more statistically rigorous approaches using hierarchical models (bivariate random-effects meta-analysis and hierarchical summary ROC curve analysis). We applied the methods to data from a sample of eight systematic reviews chosen to illustrate a variety of patterns of results. RESULTS: In each meta-analysis, there was substantial heterogeneity between the results of different studies. Simple pooling of results gave misleading summary estimates of sensitivity and specificity in some meta-analyses, and the Littenberg-Moses method produced summary ROC curves that diverged from those produced by more rigorous methods in some situations. CONCLUSION: The closely related hierarchical summary ROC curve or bivariate models should be used as the standard method for meta-analysis of diagnostic accuracy.
Resumo:
Airway access is needed for a number of experimental animal models, and the majority of animal research is based on mouse models. Anatomical conditions in mice are small, and the narrow glottic opening allows intubation only with a subtle technique. We therefore developed a microscopic endotracheal intubation method with a wire guide technique in mice anaesthetized with halothane in oxygen. The mouse is hung perpendicularly with its incisors on a thread fixed on a vertical plate. The tongue is placed with a pair of forceps between the left hand's thumb and forefinger and slightly pulled, while the neck and thorax are positioned using the third and fourth fingers. By doing so, the neck can be slightly stretched, which allows optimal visualization of the larynx and the vocal cords. To ensure a safe intubation, a fine wire guide is placed under vision between the vocal cords and advanced about 5 mm into the trachea. An intravenous 22G x 1 in. plastic or Teflon catheter is guided over this wire. In a series of 41 mice, between 21 and 38 g, the success rate for the first intubation attempt was >95%. Certainty of the judgement procedure was 100% and success rate was higher using the described method when compared with a transillumination method in a further series. The technique is safe, less invasive than tracheostomy and suitable for controlled ventilation and pulmonary substance application.
Resumo:
This study analyses the impact on the oceanic mean state of the evolution of the oceanic component (NEMO) of the climate model developed at Institut Pierre Simon Laplace (IPSL-CM), from the version IPSL-CM4, used for third phase of the Coupled Model Intercomparison Project (CMIP3), to IPSL-CM5A, used for CMIP5. Several modifications have been implemented between these two versions, in particular an interactive coupling with a biogeochemical module, a 3-band model for the penetration of the solar radiation, partial steps at the bottom of the ocean and a set of physical parameterisations to improve the representation of the impact of turbulent and tidal mixing. A set of forced and coupled experiments is used to single out the effect of each of these modifications and more generally the evolution of the oceanic component on the IPSL coupled models family. Major improvements are located in the Southern Ocean, where physical parameterisations such as partial steps and tidal mixing reinforce the barotropic transport of water mass, in particular in the Antarctic Circumpolar Current) and ensure a better representation of Antarctic bottom water masses. However, our analysis highlights that modifications, which substantially improve ocean dynamics in forced configuration, can yield or amplify biases in coupled configuration. In particular, the activation of radiative biophysical coupling between biogeochemical cycle and ocean dynamics results in a cooling of the ocean mean state. This illustrates the difficulty to improve and tune coupled climate models, given the large number of degrees of freedom and the potential compensating effects masking some biases.
Resumo:
PURPOSE Primary nasal epithelial cells are used for diagnostic purposes in clinical routine and have been shown to be good surrogate models for bronchial epithelial cells in studies of airway inflammation and remodeling. We aimed at comparing different instruments allowing isolation of nasal epithelial cells. METHODS Primary airway epithelial cell cultures were established using cells acquired from the inferior surface of the middle turbinate of both nostrils. Three different instruments to isolate nasal cells were used: homemade cytology brush, nasal swab, and curette. Cell count, viability, time until a confluent cell layer was reached, and success rate in establishing cell cultures were evaluated. A standard numeric pain intensity scale was used to assess the acceptability of each instrument. RESULTS Sixty healthy adults (median with interquartile range [IQR] age of 31 [26-37] years) participated in the study. Higher number of cells (×10(5) cells/ml) was obtained using brushes (9.8 [5.9-33.5]) compared to swabs (2.4 [1.5-3.9], p < 0.0001) and curettes (5.5 [4.4-6.9], p < 0.01). Cell viability was similar between groups. Cells obtained by brushes had the fastest growth rate, and the success rate in establishing primary cell cultures was highest with brushes (90% vs. 65% for swabs and 70% for curettes). Pain was highest with curettes (VAS score 4.0 [3.0-5.0] out of 10). The epithelial phenotype of the cultures was confirmed through cytokeratin and E-cadherin staining. CONCLUSIONS All three types of instruments allow collection and growth of human nasal epithelial cells with good acceptability to study participants. The most efficient instrument is the nasal brush.
Resumo:
The near nucleus coma of Comet 9P/Tempel 1 has been simulated with the 3D Direct Simulation Monte Carlo (DSMC) code PDSC++ (Su, C.-C. [2013]. Parallel Direct Simulation Monte Carlo (DSMC) Methods for Modeling Rarefied Gas Dynamics. PhD Thesis, National Chiao Tung University, Taiwan) and the derived column densities have been compared to observations of the water vapour distribution found by using infrared imaging spectrometer on the Deep Impact spacecraft (Feaga, L.M., A’Hearn, M.F., Sunshine, J.M., Groussin, O., Farnham, T.L. [2007]. Icarus 191(2), 134–145. http://dx.doi.org/10.1016/j.icarus.2007.04.038). Modelled total production rates are also compared to various observations made at the time of the Deep Impact encounter. Three different models were tested. For all models, the shape model constructed from the Deep Impact observations by Thomas et al. (Thomas, P.C., Veverka, J., Belton, M.J.S., Hidy, A., A’Hearn, M.F., Farnham, T.L., et al. [2007]. Icarus, 187(1), 4–15. http://dx.doi.org/10.1016/j.icarus.2006.12.013) was used. Outgassing depending only on the cosine of the solar insolation angle on each shape model facet is shown to provide an unsatisfactory model. Models constructed on the basis of active areas suggested by Kossacki and Szutowicz (Kossacki, K., Szutowicz, S. [2008]. Icarus, 195(2), 705–724. http://dx.doi.org/10.1016/j.icarus.2007.12.014) are shown to be superior. The Kossacki and Szutowicz model, however, also shows deficits which we have sought to improve upon. For the best model we investigate the properties of the outflow.
Resumo:
67P/Churyumov-Gerasimenko (67P) is a Jupiter-family comet and the object of investigation of the European Space Agency mission Rosetta. This report presents the first full 3D simulation results of 67P’s neutral gas coma. In this study we include results from a direct simulation Monte Carlo method, a hydrodynamic code, and a purely geometric calculation which computes the total illuminated surface area on the nucleus. All models include the triangulated 3D shape model of 67P as well as realistic illumination and shadowing conditions. The basic concept is the assumption that these illumination conditions on the nucleus are the main driver for the gas activity of the comet. As a consequence, the total production rate of 67P varies as a function of solar insolation. The best agreement between the model and the data is achieved when gas fluxes on the night side are in the range of 7% to 10% of the maximum flux, accounting for contributions from the most volatile components. To validate the output of our numerical simulations we compare the results of all three models to in situ gas number density measurements from the ROSINA COPS instrument. We are able to reproduce the overall features of these local neutral number density measurements of ROSINA COPS for the time period between early August 2014 and January 1 2015 with all three models. Some details in the measurements are not reproduced and warrant further investigation and refinement of the models. However, the overall assumption that illumination conditions on the nucleus are at least an important driver of the gas activity is validated by the models. According to our simulation results we find the total production rate of 67P to be constant between August and November 2014 with a value of about 1 × 10²⁶ molecules s⁻¹.