22 resultados para sodium carbonate and steam catalytic gasification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal sodium retention in experimental liver cirrhosis originates from the distal nephron sensitive to aldosterone. The aims of this study were to (1) determine the exact site of sodium retention along the aldosterone-sensitive distal nephron, and (2) to evaluate the role of aldosterone and mineralocorticoid receptor activation in this process. Liver cirrhosis was induced by bile duct ligation in either adrenal-intact or corticosteroid-clamped mice. Corticosteroid-clamp was achieved through adrenalectomy and corticosteroid supplementation with aldosterone and dexamethasone via osmotic minipumps. 24-hours renal sodium balance was evaluated in metabolic cages. Activity and expression of sodium- and potassium-dependent adenosine triphosphatase were determined in microdissected segments of nephron. Within 4-5 weeks, cirrhosis induced sodium retention in adrenal-intact mice and formation of ascites in 50% of mice. At that time, sodium- and potassium-dependent adenosine triphosphatase activity increased specifically in cortical collecting ducts. Hyperaldosteronemia was indicated by increases in urinary aldosterone excretion and in sgk1 (serum- and glucocorticoid-regulated kinase 1) mRNA expression in collecting ducts. Corticosteroid-clamp prevented induction of sgk1 but not cirrhosis-induced sodium retention, formation of ascites and stimulation of sodium- and potassium-dependent adenosine triphosphatase activity and expression (mRNA and protein) in collecting duct. These findings demonstrate that sodium retention in cirrhosis is independent of hyperaldosteronemia and of the activation of mineralocorticoid receptor. CONCLUSION: Bile duct ligation in mice induces cirrhosis which, within 4-5 weeks, leads to the induction of sodium- and potassium-dependent adenosine triphosphatase in cortical collecting ducts, to renal sodium retention and to the formation of ascites. Sodium retention, ascites formation and induction of sodium- and potassium-dependent adenosine triphosphatase are independent of the activation of mineralocorticoid receptors by either aldosterone or glucocorticoids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of the two alkali metals sodium and cesium in crop plants are relevant in an ecological context. Redistribution processes for these elements in young wheat plants were investigated in the work reported here. Two days old wheat plants (Triticum aestivum L. cv. Arina) were fed for 24 h with sodium‐22 (22Na) and cesium‐134 (134Cs) via the main root and incubated afterwards in a culture room. Cesium‐134 accumulated in newly formed parts of the main root and in the expanding leaves during the first 20 days after labeling, while 22Na accumulated transiently in these plant parts, reached a peak and declined after a few days. A high percentage of 22Na was released from the roots to the medium. Total Na in leaves also accumulated transiently, but its highest accumulation appeared later than the peak of 22Na. Therefore, the distribution and retranslocation processes differ considerably for sodium and cesium in wheat plants. Such differences must be considered for the evaluation of environmental effects (e.g., release of pollutants into the environment) on the quality of harvested cereal products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to investigate the effect of sodium intake on renal tissue oxygenation in humans. To this purpose, we measured renal hemodynamics, renal sodium handling, and renal oxygenation in normotensive (NT) and hypertensive (HT) subjects after 1 week of a high-sodium and 1 week of a low-sodium diet. Renal oxygenation was measured using blood oxygen level-dependent magnetic resonance. Tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* values in the medulla and cortex were calculated, with a low R2* indicating a high tissue oxygenation. Ten male NT (mean age: 26.5+/-7.4 years) and 8 matched HT subjects (mean age: 28.8+/-5.7 years) were studied. Cortical R2* was not different under the 2 conditions of salt intake. Medullary R2* was significantly lower under low sodium than high sodium in both NT and HT subjects (28.1+/-0.8 versus 31.3+/-0.6 s(-1); P<0.05 in NT; and 27.9+/-1.5 versus 30.3+/-0.8 s(-1); P<0.05, in HT), indicating higher medullary oxygenation under low-sodium conditions. In NT subjects, medullary oxygenation was positively correlated with proximal reabsorption of sodium and negatively with absolute distal sodium reabsorption, but not with renal plasma flow. In HT subjects, medullary oxygenation correlated with the 24-hour sodium excretion but not with proximal or with the distal handling of sodium. These data demonstrate that dietary sodium intake influences renal tissue oxygenation, low sodium intake leading to an increased renal medullary oxygenation both in normotensive and young hypertensive subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a severe striated muscle disease due to the absence of dystrophin. Dystrophin deficiency results in dysfunctional sodium channels and conduction abnormalities in hearts of mdx mice. Disease progression in the mdx mouse only modestly reflects that of DMD patients, possibly due to utrophin up-regulation. Here, we investigated mice deficient in both dystrophin and utrophin [double knockout (DKO)] to assess the role of utrophin in the regulation of the cardiac sodium channel (Na(v)1.5) in mdx mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

11beta-Hydroxysteroid dehydrogenase (11beta-HSD) enzymes catalyze the conversion of biologically inactive 11-ketosteroids into their active 11beta-hydroxy derivatives and vice versa. Inhibition of 11beta-HSD1 has considerable therapeutic potential for glucocorticoid-associated diseases including obesity, diabetes, wound healing, and muscle atrophy. Because inhibition of related enzymes such as 11beta-HSD2 and 17beta-HSDs causes sodium retention and hypertension or interferes with sex steroid hormone metabolism, respectively, highly selective 11beta-HSD1 inhibitors are required for successful therapy. Here, we employed the software package Catalyst to develop ligand-based multifeature pharmacophore models for 11beta-HSD1 inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed several selective inhibitors. Efficient inhibition of recombinant human 11beta-HSD1 in intact transfected cells as well as endogenous enzyme in mouse 3T3-L1 adipocytes and C2C12 myotubes was demonstrated for compound 27, which was able to block subsequent cortisol-dependent activation of glucocorticoid receptors with only minor direct effects on the receptor itself. Our results suggest that inhibitor-based pharmacophore models for 11beta-HSD1 in combination with suitable cell-based activity assays, including such for related enzymes, can be used for the identification of selective and potent inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: To overcome the ototoxicity of cisplatin, single bolus infusions were replaced by repeated prolonged infusions of lower doses or by continuous infusions at still lower infusion rates. However, considering ototoxicity little is, in fact, known about the tolerance of repeated prolonged or continuous infusion in children. PROCEDURE: Auditory function was monitored along with plasma concentrations of free and total platinum (Pt), and with standard serum parameters (sodium, potassium, calcium, magnesium, phosphate, chloride, and creatinine) in 24 children receiving cisplatin by continuous infusion for the treatment of neuroblastoma and osteosarcoma or by repeated 1 or 6 hr infusions for the treatment of germ cell tumors. RESULTS: Hearing deteriorated in 10/15 osteosarcoma patients, 2/3 neuroblastoma patients, and 1/6 patients with germ cell tumors. Ototoxicity occurred after cumulative doses between 120 and 360 mg/m(2) cisplatin. In osteosarcoma patients, ototoxicity was associated with a comparatively higher mean plasma concentration of free Pt. However, Pt plasma concentrations did not discriminate between patients with or without ototoxicity. In patients experiencing ototoxicity serum creatinine increased by 45% compared to pre-treatment levels (mean). Serum creatinine increased by 26% in patients without ototoxicity (P < 0.05, Mann-Whitney Rank sum test). Despite standardized hydration, discrete but significant changes of potassium, sodium, magnesium, and phosphate were observed during and/or after cisplatin infusion, which, however, did not discriminate between patients with and without ototoxicity. CONCLUSIONS: While continuous cisplatin infusions are less nephrotoxic than repeated prolonged infusions, we observed considerable ototoxicity in patients treated with continuous cisplatin infusions, which necessitates further evaluations on the tolerance of continuous cisplatin infusions in children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of three dietary selenium (Se) levels (0.15, 0.35 and 0.5 mg/kg dry matter (dm) and of two Se-compounds (sodium selenite and Se-yeast) on the Se-status, liver function and claw health were studied using 36 fattening bulls in a two-factorial feeding trial that lasted 16 weeks. The claw health was assessed macroscopically and microscopically. Compared to the two control diets containing 0.15 mg Se/kg dm, the intake of the diets containing 0.35 and 0.50 mg Se/kg dm significantly (P < 0.05) increased the Se-concentration in serum, hair, liver and skeletal muscle. Compared to sodium selenite the intake of Se-yeast resulted in significantly (P < 0.05) higher Se-concentration in serum, liver and hair. Concerning the claw horn quality, there was no significant difference between the different groups; the animals receiving organic Se tended to have a better histological score (P = 0.06) at the coronary band than the groups fed with sodium selenite. The serum vitamin E level decreased significantly (P < 0.05) with increasing Se-intake, which had no influence (P > 0.1) on growth and liver function parameters. With the exception of the decrease of the serum vitamin E level indicating an oxidative stress caused by a high Se-intake, no negative effects of dietary selenium exceeding recommended levels for 4 months were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS Loss-of-function mutations in the SCN5A-encoded sodium channel SCN5A or Nav1.5 have been identified in idiopathic ventricular fibrillation (IVF) in the absence of Brugada syndrome phenotype. Nav1.5 is regulated by four sodium channel auxiliary beta subunits. Here, we report a case with IVF and a novel mutation in the SCN3B-encoded sodium channel beta subunit Navbeta3 that causes a loss of function of Nav1.5 channels in vitro. METHODS AND RESULTS Comprehensive open reading frame mutational analysis of KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, GPD1L, four sodium channel beta subunit genes (SCN1-4B), and targeted scan of RYR2 was performed. A novel missense mutation, Navbeta3-V54G, was identified in a 20-year-old male following witnessed collapse and defibrillation from VF. The ECG exhibited epsilon waves, and imaging studies demonstrated a structurally normal heart. The mutated residue was highly conserved across species, localized to the Navbeta3 extracellular domain, and absent in 800 reference alleles. We found that HEK-293 cells had endogenous Navbeta3, but COS cells did not. Co-expression of Nav1.5 with Navbeta3-V54G (with or without co-expression of the Navbeta1 subunit) in both HEK-293 cells and COS cells revealed a significant decrease in peak sodium current and a positive shift of inactivation compared with WT. Co-immunoprecipitation experiments showed association of Navbeta3 with Nav1.5, and immunocytochemistry demonstrated a dramatic decrease in trafficking to the plasma membrane when co-expressed with mutant Navbeta3-V54G. CONCLUSION This study provides molecular and cellular evidence implicating mutations in Navbeta3 as a cause of IVF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brugada syndrome (BrS) is a condition defined by ST-segment alteration in right precordial leads and a risk of sudden death. Because BrS is often associated with right bundle branch block and the TRPM4 gene is involved in conduction blocks, we screened TRPM4 for anomalies in BrS cases. The DNA of 248 BrS cases with no SCN5A mutations were screened for TRPM4 mutations. Among this cohort, 20 patients had 11 TRPM4 mutations. Two mutations were previously associated with cardiac conduction blocks and 9 were new mutations (5 absent from ~14'000 control alleles and 4 statistically more prevalent in this BrS cohort than in control alleles). In addition to Brugada, three patients had a bifascicular block and 2 had a complete right bundle branch block. Functional and biochemical studies of 4 selected mutants revealed that these mutations resulted in either a decreased expression (p.Pro779Arg and p.Lys914X) or an increased expression (p.Thr873Ile and p.Leu1075Pro) of TRPM4 channel. TRPM4 mutations account for about 6% of BrS. Consequences of these mutations are diverse on channel electrophysiological and cellular expression. Because of its effect on the resting membrane potential, reduction or increase of TRPM4 channel function may both reduce the availability of sodium channel and thus lead to BrS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Hyponatremia is frequently observed in intensive care unit (ICU) patients, but there is still lack information on the physiological mechanisms of development. MATERIALS AND METHODS In this retrospective analysis we performed tonicity balances in 54 patients with ICU acquired hyponatremia. We calculated fluid and solute in and outputs during 24 hours in 106 patient days with decreasing serum-sodium levels. RESULTS We could observe a positive fluid balance as a single reason for hyponatremia in 25% of patients and a negative solute balance in 57%. In 18% both factors contributed to the decrease in serum-sodium. Hyponatremic patients had renal water retention, measured by electrolyte free water clearance calculation in 79% and positive input of free water in 67% as reasons for decline of serum-sodium. The theoretical change of serum sodium during 24 hours according to the calculations of measured balances correlated well with the real change of serum sodium (r = 0.78, P < .01). CONCLUSIONS Balance studies showed that renal water retention together with renal sodium loss and high electrolyte free water input are the major contributors to the development of hyponatremia. Control of renal water and sodium handling by urine analysis may contribute to a better fluid management in the ICU population.