93 resultados para smoking habits
Resumo:
BACKGROUND The aim of this study was to assess sex-associated differences in lung cancer patients in Eastern Switzerland. METHODS All 670 lung cancer patients referred to the cancer center in St. Gallen between January 2000 and December 2005 were retrospectively analyzed. We investigated sex-associated differences in age, smoking habits, histology, stage, treatment and survival. RESULTS There were 474 (71%) men and 196 (29%) women with lung cancer. Mean age at the time of diagnosis was 64 years for women and 67 years for men (p = 0.01). Of the patients <55 years of age, 47 (24%) were women and only 65 (14%) were men. Men smoked significantly more than women (median pack-years: 50 vs. 30; p < 0.001). Of the heavy smokers (>40 pack-years), 278 (56%) were men and 68 (33%) were women. More men had squamous cell carcinoma (36%) than women (17%). Conversely, more women presented with adenocarcinoma (48%) than men (27%). No significant sex-associated differences were observed when analyzing first treatments received. Median overall survival was 10 months for both sexes. CONCLUSIONS In Eastern Switzerland, women with lung cancer were younger, more likely to have smoked significantly less and more likely to have adenocarcinoma, compared to men with lung cancer. These findings are consistent with those found in other western populations.
Resumo:
The present study validated the accuracy of data from a self-reported questionnaire on smoking behaviour with the use of exhaled carbon monoxide (CO) level measurements in two groups of patients. Group 1 included patients referred to an oral medicine unit, whereas group 2 was recruited from the daily outpatient service. All patients filled in a standardized questionnaire regarding their current and former smoking habits. Additionally, exhaled CO levels were measured using a monitor. A total of 121 patients were included in group 1, and 116 patients were included in group 2. The mean value of exhaled CO was 7.6 ppm in the first group and 9.2 ppm in the second group. The mean CO values did not statistically significantly differ between the two groups. The two exhaled CO level measurements taken for each patient exhibited very good correlation (Spearman's coefficient of 0.9857). Smokers had a mean difference of exhaled CO values of 13.95 ppm (p < 0.001) compared to non-smokers adjusted for the first or second group. The consumption of one additional pack year resulted in an increase in CO values of 0.16 ppm (p = 0.003). The consumption of one additional cigarette per day elevated the CO measurements by 0.88 ppm (p < 0.001). Based on these results, the correlations between the self-reported smoking habits and exhaled CO values are robust and highly reproducible. CO monitors may offer a non-invasive method to objectively assess current smoking behaviour and to monitor tobacco use cessation attempts in the dental setting.
Resumo:
The present study analyzed history of smoking and willingness to quit smoking in patients referred for diagnosis and treatment of different oral mucosal lesions. Prior to the initial clinical examination, patients filled in a standardized questionnaire regarding their current and former smoking habits and willingness to quit. Definitive diagnoses were classified into three groups (benign/reactive lesions, premalignant lesions and conditions, and malignant diseases) and correlated with the self-reported data in the questionnaires. Of the 980 patients included, 514 (52%) described themselves as never smokers, 202 (21%) as former smokers, and 264 (27%) as current smokers. In the group of current smokers, 23% thought their premalignant lesions/conditions were related to their smoking habit, but only 15% of the patients with malignant mucosal diseases saw that correlation. Only 14% of the smokers wanted to commence smoking cessation within the next 30 days. Patients with malignant diseases (31%) showed greater willingness to quit than patients diagnosed with benign/reactive lesions (11%). Future clinical studies should attempt (1) to enhance patients' awareness of the negative impact of smoking on the oral mucosa and (2) to increase willingness to quit in smokers referred to a dental/oral medicine setting.
Resumo:
BACKGROUND: Due to the predicted age shift of the population an increase in the number of patients with late AMD is expected. At present smoking represents the only modifiable risk factor. Supplementation of antioxidants in patients at risk is the sole effective pharmacological prevention. The aim of this study is to estimate the future epidemiological development of late AMD in Switzerland and to quantify the potential effects of smoking and antioxidants supplementation. METHODS: The modelling of the future development of late AMD cases in Switzerland was based on a meta-analysis of the published data on AMD-prevalence and on published Swiss population development scenarios until 2050. Three different scenarios were compared: low, mean and high. The late AMD cases caused by smoking were calculated using the "population attributable fraction" formula and data on the current smoking habits of the Swiss population. The number of potentially preventable cases was estimated using the data of the Age-Related Eye Disease Study (AREDS). RESULTS: According to the mean population development scenario, late AMD cases in Switzerland will rise from 37 200 cases in 2005 to 52 500 cases in 2020 and to 93 200 cases in 2050. Using the "low" and the "high" scenarios the late AMD cases may range from 49 500 to 56 000 in 2020 and from 73 700 to 118 400 in 2050, respectively. Smoking is responsible for approximately 7 % of all late AMD cases, i. e., 2600 cases in 2005, 3800 cases in 2020, 6600 cases in 2050 ("mean scenario"). With future antioxidant supplementation to all patients at risk another 3100 cases would be preventable until 2020 and possibly 23 500 cases until 2050. CONCLUSION: Due to age shift in the population a 2.5-fold increase in late AMD cases until 2050 is expected, representing a socioeconomic challenge. Cessation of smoking and supplementation of antioxidants to all patients at risk has the potential to reduce this number. Unfortunately, public awareness is low. These data may support health-care providers and public opinion leaders when developing public education and prevention strategies.
Resumo:
OBJECTIVES This study analyses the changes in smoking habits over the course of 1 year in a group of patients referred to an oral medicine unit. MATERIALS AND METHODS Smoking history and behaviour were analysed at baseline and after 1 year based on a self-reported questionnaire and on exhaled carbon monoxide levels [in parts per million (ppm)]. During the initial examination, all smokers underwent tobacco use prevention and cessation counselling. RESULTS Of the initial group of 121 patients, 98 were examined at the follow-up visit. At the baseline examination, 33 patients (33.67 %) indicated that they were current smokers. One year later, 14 patients (42.24 % out of the 33 smokers of the initial examination) indicated that they had attempted to stop smoking at least once over the follow-up period and 15.15 % (5 patients) had quit smoking. The mean number of cigarettes smoked per day by current smokers decreased from 13.10 to 12.18 (p = 0.04). The exhaled CO level measurements showed very good correlation with a Spearman's coefficient 0.9880 for the initial visit, and 0.9909 for the follow-up examination. For current smokers, the consumption of one additional cigarette per day elevated the CO measurements by 0.77 ppm (p < 0.0001) at the baseline examination and by 0.84 ppm (p < 0.0001) at the 1-year follow-up. CONCLUSIONS In oral health care, where smoking cessation is an important aspect of the treatment strategy, the measurement of exhaled carbon monoxide shows a very good correlation with a self-reported smoking habit. CLINICAL RELEVANCE Measurement of exhaled carbon monoxide is a non-invasive, simple and objective measurement technique for documenting and monitoring smoking cessation and reduction.
Resumo:
BACKGROUND: Most prevalence studies on oral leukoplakia (OL) in China have been published in the Chinese language. The present review on the literature in Chinese aimed at making the data available to colleagues who are not familiar with the Chinese language. METHODS: The overall rate and 95% confidence interval of OL were calculated using Excel 2003. RESULTS: Overall prevalence of OL was 9.18% (95%CI = 9.06-9.30%). Gender ratio of prevalence was 8.03:1 (males/females). Prevalence was high in age groups over 40 years with the highest in the group aged 60-69 years (21.04%, 95%CI = 19.95-22.13%). The buccal mucosa was most commonly affected (47.08%, 95%CI = 46.52-47.64%), followed by lip (39.09%), palate (9.85%), gingiva (1.80%), and tongue (1.46%). The prevalence in smokers was 23.43% and in non-smokers 1.93%. Among three variants of smoking, the traditional Hanyan pipe smoking carried the highest risk for the development of OL followed by cigarette and Shuiyan water pipe smoking. The rate of alcohol drinkers with OL was 54.50% and 22.21% in individuals without OL. No case of oral cancer was found in six surveys. CONCLUSIONS: The present data on the prevalence of OL in China are comparable to those in other parts of the world. Some traditional smoking habits, however, are particular to certain regions of China.
Resumo:
To test the hypothesis whether microbiota in oral biofilm is linked with obesity in adolescents we designed this cross-sectional study. Obese adolescents (n = 29) with a mean age of 14.7 years and normal weight subjects (n = 58) matched by age and gender were examined with respect to visible plaque index (VPI%) and gingival inflammation (bleeding on probing (BOP%)). Stimulated saliva was collected. They answered a questionnaire concerning medical history, medication, oral hygiene habits, smoking habits, and sociodemographic background. Microbiological samples taken from the gingival crevice was analyzed by checkerboard DNA-DNA hybridization technique. The sum of bacterial cells in subgingival biofilm was significantly associated with obesity (P < 0.001). The link between sum of bacterial cells and obesity was not confounded by any of the studied variables (chronic disease, medication, VPI%, BOP%, flow rate of whole saliva, or meal frequency). Totally 23 bacterial species were present in approximately threefold higher amounts, on average, in obese subjects compared with normal weight controls. Of the Proteobacteria phylum, Campylobacter rectus and Neisseria mucosa were present in sixfold higher amounts among obese subjects. The association between obesity and sum of bacterial cells in oral subgingival biofilm indicates a possible link between oral microbiota and obesity in adolescents.
Resumo:
BACKGROUND: Interleukin-1 gene polymorphism (IL-1 gene) has been associated with periodontitis. The present study examined the subgingival microbiota by IL-1 gene status in subjects undergoing supportive periodontal therapy (SPT). METHODS: A total of 151 subjects with known IL-1 gene status (IL-1A +4845/IL-1B -3954) (IL-1 gene) were included in this study. Clinical data and subgingival plaque samples (40 taxa) were collected. These taxa were determined by the checkerboard DNA-DNA hybridization method. RESULTS: Gender, smoking habits (n-par tests), age, and clinical periodontal conditions did not differ by IL-1 gene status. IL-1 gene-negative subjects had a higher total bacterial load (mean difference, 480.4 x 10(5); 95% confidence interval [CI], 77 to 884 x 10(5); P <0.02). The levels of Actinobacillus actinomycetemcomitans (mean difference, 30.7 x 10(5); 95% CI, 2.2 to 59.5 x 10(5); P <0.05), Eubacterium nodatum (mean difference, 4.2 x 10(5); 95% CI, 0.6 to 7.8 x 10(5); P <0.02), Porphyromonas gingivalis (mean difference, 17.9 x 10(5); 95% CI, 1.2 to 34.5 x 10(5); P <0.05), and Streptococcus anginosus (mean difference, 4.0 x 10(5); 95% CI, 0.2 to 7.2 x 10(5); P <0.05) were higher in IL-1 gene-negative subjects, an observation specifically found at sites with probing depths <5.0 mm. CONCLUSIONS: Bleeding on probing did not differ by IL gene status, reflecting clinical SPT efficacy. IL-1 gene-negative subjects had higher levels of periodontal pathogens. This may suggest that among subjects undergoing SPT, a lower bacterial load is required in IL-1 gene-positive subjects to develop the same level of periodontitis as in IL-1 gene-negative subjects.
Resumo:
Objectives: To assess the ability to predict tooth loss on the basis of clinical and radiographic parameters. Methods: Clinical and radiographic data from a five year prospective cohort were studied to identify cause of progressive tooth loss in older subjects. Results: 363 subjects with a baseline mean age of 67.1 years (S.D. + 4.7, range : 60-75), and 51.4% women were studied including 59.5% never smokers, and 33.0% current smokers. At baseline the subjects had, on average, 22.4 teeth (S.D. + 6.4). Self-assessed tooth loss risk was identified by 16.0 % of subjects while 34% of subjects lost teeth. Tooth loss due to caries was found in 24.7% (178 teeth), periodontitis in 15.4% (133 teeth), peri-apical lesions 5.9% (32 teeth), combined periodontal/peri-apical in 3.4% (18 teeth), and teeth irrational to treat in 7.5% (58 teeth) of the subjects. 122 of the extracted teeth (34%) should have been possible to save but were extracted. At year five severe caries, periodontitis, peri-apical lesions, periodontal/peri-apical, irrational to treat were found in 6.3%, 7.2%, 2.6%, 4.6%, and 1.2% of subjects, respectively. Signs of osteoporosis increased by 11.2 % (Klemetti index). Linear regression analysis failed to include smoking habits as being explanatory. Explanatory factors were researcher prediction of extraction needs, subject self assessment of risk and change in ostoporosis status (r2 = 0.39, ANOVA, F=22.6, p< 0.001). Conclusions: Caries and periodontitis are primary causes for extraction. Progressive osteoporosis is associated with tooth loss. Radiographs, and subjects self-assessment of risk for tooth loss are robust predictors.
Resumo:
The development of a clinical decision tree based on knowledge about risks and reported outcomes of therapy is a necessity for successful planning and outcome of periodontal therapy. This requires a well-founded knowledge of the disease entity and a broad knowledge of how different risk conditions attribute to periodontitis. The infectious etiology, a complex immune response, and influence from a large number of co-factors are challenging conditions in clinical periodontal risk assessment. The difficult relationship between independent and dependent risk conditions paired with limited information on periodontitis prevalence adds to difficulties in periodontal risk assessment. The current information on periodontitis risk attributed to smoking habits, socio-economic conditions, general health and subjects' self-perception of health, is not comprehensive, and this contributes to limited success in periodontal risk assessment. New models for risk analysis have been advocated. Their utility for the estimation of periodontal risk assessment and prognosis should be tested. The present review addresses several of these issues associated with periodontal risk assessment.
Resumo:
The prevalence of periodontitis and cardiovascular disease (CVD) is high. A mixed infectious biofilm etiology of periodontitis is known but not fully established in CVD. Cofactors; smoking habits, stress, ethnicity, genetics, socioeconomics and age contribute to both diseases. The objectives of this report are to summarize factors in regards to CVD and periodontitis that are clinically relevant. The hypothesis behind a relationship between the two conditions can be founded in (I) shared infections etiology, (II) shared inflammatory response, (III) epidemiological and case-control studies, and (IV) periodontal studies demonstrating improvements of CVD markers. Streptococcus species in the S. mitis group, and S. anginosus group have been identified in periodontitis and are known as pathogens in endocarditis possibly transported from the oral cavity to the heart through bacteremia during dental therapies, and tooth brushing. Other periodontal bacteria such as Porphyromonas gingivalis, Fusobacterium nucleatum and Parvimonas micra are beta-lactamase producing and may contribute to antibiotic resistance (extended spectrum beta-lactamases). Other bacteria in CVD and periodontitis include Staphylococcus aureus, and Pseudomonas aeruginosa. Chlamydia pneumoniae and P. gingivalis lipopolyysaccharide capsels share homology and induce heat-shock protein activity and a cascade of proinflammatory cytokines. Associations between periodontitis and CVD have been presented in many studies when controlling for confounders. Other studies have demonstrated that periodontal therapies increase brachial artery flow rate and reduce serum inflammatory cytokine levels. Thus, physicians caring for subjects at CVD risk should consult with dentists/periodontists. Dentists must improve their medical knowledge and also learn to consult with physicians when treating patients at CVD risk.
Resumo:
BACKGROUND Vitamin D deficiency is prevalent in HIV-infected individuals and vitamin D supplementation is proposed according to standard care. This study aimed at characterizing the kinetics of 25(OH)D in a cohort of HIV-infected individuals of European ancestry to better define the influence of genetic and non-genetic factors on 25(OH)D levels. These data were used for the optimization of vitamin D supplementation in order to reach therapeutic targets. METHODS 1,397 25(OH)D plasma levels and relevant clinical information were collected in 664 participants during medical routine follow up visits. They were genotyped for 7 SNPs in 4 genes known to be associated with 25(OH)D levels. 25(OH)D concentrations were analyzed using a population pharmacokinetic approach. The percentage of individuals with 25(OH)D concentrations within the recommended range of 20-40ng/ml during 12 months of follow up and several dosage regimens were evaluated by simulation. RESULTS A one-compartment model with linear absorption and elimination was used to describe 25(OH)D pharmacokinetics, while integrating endogenous baseline plasma concentrations. Covariate analyses confirmed the effect of seasonality, body mass index, smoking habits, the analytical method, darunavir/r and the genetic variant in GC (rs2282679) on 25(OH)D concentrations. 11% of the interindividual variability in 25(OH)D levels was explained by seasonality and other non-genetic covariates and 1% by genetics. The optimal supplementation for severe vitamin D deficient patients was 300000 IU two times per year. CONCLUSIONS This analysis allowed identifying factors associated with 25(OH)D plasma levels in HIV-infected individuals. Improvement of dosage regimen and timing of vitamin D supplementation is proposed based on those results.
Resumo:
OBJECTIVES Retrospectively, we assessed the likelihood that peri-implantitis was associated with a history of systemic disease, periodontitis, and smoking habits. METHODS Data on probing pocket depth (PPD), bleeding on probing (BOP), and radiographic bone levels were obtained from individuals with dental implants. Peri-implantitis was defined as described by Sanz & Chapple 2012. Control individuals had healthy conditions or peri-implant mucositis. Information on past history of periodontitis, systemic diseases, and on smoking habits was obtained. RESULTS One hundred and seventy-two individuals had peri-implantitis (mean age: 68.2 years, SD ± 8.7), and 98 individuals (mean age: 44.7 years, SD ± 15.9) had implant health/peri-implant mucositis. The mean difference in bone level at implants between groups was 3.5 mm (SE mean ± 0.4, 95% CI: 2.8, 4.3, P < 0.001). A history of cardiovascular disease was found in 27.3% of individuals with peri-implantitis and in 3.0% of individuals in the implant health/peri-implant mucositis group. When adjusting for age, smoking, and gender, odds ratio (OR) of having peri-implantitis and a history of cardiovascular disease was 8.7 (95% CI: 1.9, 40.3 P < 0.006), and odds ratio of having a history of periodontitis was 4.5 (95% CI 2.1, 9.7, P < 0.001). Smoking or gender did not significantly contribute to the outcome. CONCLUSIONS In relation to a diagnosis of peri-implantitis, a high likelihood of comorbidity was expressed by a history of periodontitis and a history of cardiovascular disease.
Resumo:
BACKGROUND: Lack of reliable dietary data has hampered the ability to effectively distinguish between effects of smoking and diet on plasma antioxidant status. As confirmed by analyses of comprehensive food-frequency questionnaires, the total dietary intakes of fruit and vegetables and of dietary antioxidants were not significantly different between the study groups in the present study, thereby enabling isolation of the effect of smoking. OBJECTIVE: Our objective was to investigate the effect of smoking on plasma antioxidant status by measuring ascorbic acid, alpha-tocopherol, gamma-tocopherol, beta-carotene, and lycopene, and subsequently, to test the effect of a 3-mo dietary supplementation with a moderate-dose vitamin cocktail. DESIGN: In a double-blind, placebo-controlled design, the effect of a vitamin cocktail containing 272 mg vitamin C, 31 mg all-rac-alpha-tocopheryl acetate, and 400 microg folic acid on plasma antioxidants was determined in a population of smokers (n = 37) and nonsmokers (n = 38). The population was selected for a low intake of fruit and vegetables and recruited from the San Francisco Bay area. RESULTS: Only ascorbic acid was significantly depleted by smoking per se (P < 0.01). After the 3-mo supplementation period, ascorbic acid was efficiently repleted in smokers (P < 0.001). Plasma alpha-tocopherol and the ratio of alpha- to gamma-tocopherol increased significantly in both supplemented groups (P < 0.05). CONCLUSIONS: Our data suggest that previous reports of lower concentrations of plasma vitamin E and carotenoids in smokers than in nonsmokers may primarily have been caused by differences in dietary habits between study groups. Plasma ascorbic acid was depleted by smoking and repleted by moderate supplementation.
Resumo:
We performed 124 measurements of particulate matter (PM(2.5)) in 95 hospitality venues such as restaurants, bars, cafés, and a disco, which had differing smoking regulations. We evaluated the impact of spatial separation between smoking and non-smoking areas on mean PM(2.5) concentration, taking relevant characteristics of the venue, such as the type of ventilation or the presence of additional PM(2.5) sources, into account. We differentiated five smoking environments: (i) completely smoke-free location, (ii) non-smoking room spatially separated from a smoking room, (iii) non-smoking area with a smoking area located in the same room, (iv) smoking area with a non-smoking area located in the same room, and (v) smoking location which could be either a room where smoking was allowed that was spatially separated from non-smoking room or a hospitality venue without smoking restriction. In these five groups, the geometric mean PM(2.5) levels were (i) 20.4, (ii) 43.9, (iii) 71.9, (iv) 110.4, and (v) 110.3 microg/m(3), respectively. This study showed that even if non-smoking and smoking areas were spatially separated into two rooms, geometric mean PM(2.5) levels in non-smoking rooms were considerably higher than in completely smoke-free hospitality venues. PRACTICAL IMPLICATIONS: PM(2.5) levels are considerably increased in the non-smoking area if smoking is allowed anywhere in the same location. Even locating the smoking area in another room resulted in a more than doubling of the PM(2.5) levels in the non-smoking room compared with venues where smoking was not allowed at all. In practice, spatial separation of rooms where smoking is allowed does not prevent exposure to environmental tobacco smoke in nearby non-smoking areas.