20 resultados para photorefractive crystals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To characterize the phenotype and investigate the associations of intraretinal crystalline deposits in a large cohort with type 2 idiopathic macular telangiectasia (MacTel).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter the methodological bases are provided to achieve subnanometer resolution on two-dimensional (2D) membrane protein crystals by atomic force microscopy (AFM). This is outlined in detail with the example of AFM studies of the outer membrane protein F (OmpF) from the bacterium Escherichia coli (E. coli). We describe in detail the high-resolution imaging of 2D OmpF crystals in aqueous solution and under near-physiological conditions. The topographs of OmpF, and stylus effects and artifacts encountered when imaging by AFM are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution friction force maps of the benzylammonium terminated crystalline surface of a layer compound are presented. The lateral force map acquired with an atomic force microscope, reveals a significant contrast between different molecular orientations yielding molecular rows which differ from their neighboring ones. The single crystals are formed by stacks of copper oxalate sheets sandwiched between stereoregular organic cations, resulting in highly organized surface structures. Single molecular defects are observed at small loads. The experimental results are compared with numerical calculations which indicate a transition from an unperturbed state at small loads to a distorted state at higher loads. (C) 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the formation temperature of minerals using fluid inclusions is a crucial step in understanding rock-forming scenarios. Unfortunately, fluid inclusions in minerals formed at low temperature, such as gypsum, are commonly in a metastable monophase liquid state. To overcome this problem, ultra-short laser pulses can be used to induce vapor bubble nucleation, thus creating a stable two-phase fluid inclusion appropriate for subsequent measurements of the liquid-vapor homogenization temperature, T-h. In this study we evaluate the applicability of T-h data to accurately determine gypsum formation temperatures. We used fluid inclusions in synthetic gypsum crystals grown in the laboratory at different temperatures between 40 degrees C and 80 degrees C under atmospheric pressure conditions. We found an asymmetric distribution of the T-h values, which are systematically lower than the actual crystal growth temperatures, T-g; this is due to (1) the effect of surface tension on liquid-vapor homogenization, and (2) plastic deformation of the inclusion walls due to internal tensile stress occurring in the metastable state of the inclusions. Based on this understanding, we have determined growth temperatures of natural giant gypsum crystals from Naica (Mexico), yielding 47 +/- 1.5 degrees C for crystals grown in the Cave of Swords (120 m below surface) and 54.5 +/- 2 degrees C for giant crystals grown in the Cave of Crystals (290 m below surface). These results support the earlier hypothesis that the population and the size of the Naica crystals were controlled by temperature. In addition, this experimental method opens a door to determining the growth temperature of minerals forming in low-temperature environments.