25 resultados para organic photonic materials


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The enormous impact of crystal engineering in modern solid state chemistry takes advantage from the connection between a typical basic science field and the word engineering. Regrettably, the engineering aspect of organic or metal organic crystalline materials are limited, so far, to descriptive structural features, sometime entangled with topological aspects, but only rarely with true material design. This should include not only the fabrication and structural description at micro- and nano-scopic level of the solids, but also a proper reverse engineering, a fundamental discipline for engineers. Translated into scientific language, the reverse crystal engineering refers to a dedicated and accurate analysis of how the building blocks contribute to generate a given material property. This would enable a more appropriate design of new crystalline material. We propose here the application of reverse crystal engineering to optical properties of organic and metal organic framework structures, applying the distributed atomic polarizability approach that we have extensively investigated in the past few years[1,2].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have recently developed a method to obtain distributed atomic polarizabilities adopting a partitioning of the molecular electron density (for example, the Quantum Theory of Atoms in Molecules, [1]), calculated with or without an applied electric field. The procedure [2] allows to obtained atomic polarizability tensors, which are perfectly exportable, because quite representative of an atom in a given functional group. Among the many applications of this idea, the calculation of crystal susceptibility is easily available, either from a rough estimation (the polarizability of the isolated molecule is used) or from a more precise estimation (the polarizability of a molecule embedded in a cluster representing the first coordination sphere is used). Lorentz factor is applied to include the long range effect of packing, which is enhancing the molecular polarizability. Simple properties like linear refractive index or the gyration tensor can be calculated at relatively low costs and with good precision. This approach is particularly useful within the field of crystal engineering of organic/organometallic materials, because it would allow a relatively easy prediction of a property as a function of the packing, thus allowing "reverse crystal engineering". Examples of some amino acid crystals and salts of amino acids [3] will be illustrated, together with other crystallographic or non-crystallographic applications. For example, the induction and dispersion energies of intermolecular interactions could be calculated with superior precision (allowing anisotropic van der Waals interactions). This could allow revision of some commonly misunderstood intermolecular interactions, like the halogen bonding (see for example the recent remarks by Stone or Gilli [4]). Moreover, the chemical reactivity of coordination complexes could be reinvestigated, by coupling the conventional analysis of the electrostatic potential (useful only in the circumstances of hard nucleophilic/electrophilic interaction) with the distributed atomic polarizability. The enhanced reactivity of coordinated organic ligands would be better appreciated. [1] R. F. W. Bader, Atoms in Molecules: A Quantum Theory. Oxford Univ. Press, 1990. [2] A. Krawczuk-Pantula, D. Pérez, K. Stadnicka, P. Macchi, Trans. Amer. Cryst. Ass. 2011, 1-25 [3] A. S. Chimpri1, M. Gryl, L. H.R. Dos Santos1, A. Krawczuk, P. Macchi Crystal Growth & Design, in the press. [4] a) A. J. Stone, J. Am. Chem. Soc. 2013, 135, 7005−7009; b) V. Bertolasi, P. Gilli, G. Gilli Crystal Growth & Design, 2013, 12, 4758-4770.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction The purpose of this paper is to present the technical specifications of the Forensic Reference Phantom (FRP), to test its behavior relative to organic test materials, and discuss potential applications of the phantom in forensic radiology. Materials and method The FRP prototype is made of synthetic materials designed to simulate the computed tomography (CT) attenuation of water. It has six bore holes that accommodate multiuse containers. These containers were filled with test materials and scanned at 80 kVp, 120 kVp, and 140 kVp. X-ray attenuation was measured by two readers. Intra- and inter-reader reliability was assessed using the intra-class correlation coefficient (ICC). Significance levels between mean CT numbers at 80 kVp, 120 kVp, and 140 kVp were assessed with the Friedman-test. The T-test was used to assess significance levels between the FRP and water. Results Overall mean CT numbers ranged from −3.0–3.7HU for the FRP; −1000.3–−993.5HU for air; −157.7– −108.1HU for oil; 35.5–42.0HU for musle tissue; and 1301.5–2354.8HU for cortical bone. Inter-reader and intra-reader reliability were excellent (ICC>0.994; and ICC=0.999 respectively). CT numbers were significantly different at different energy levels. There was no significant difference between the attenuation of the FRP and water. Conclusions The FRP is a new tool for quality assurance and research in forensic radiology. The mean CT attenuation of the FRP is equivalent to water. The phantom can be scanned during routine post-mortem CT to assess the composition of unidentified objects. In addition, the FRP may be used to investigate new imaging algorithms and scan protocols in forensic radiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The aim of this study was to assess the effects of a series of different surface coated quantum dots (QDs) (organic, carboxylated [COOH] and amino [NH(2)] polytethylene glycol [PEG]) on J774.A1 macrophage cell viability and to further determine which part of the QDs cause such toxicity. Cytotoxic examination (MTT assay and LDH release) showed organic QDs to induce significant cytotoxicity up to 48 h, even at a low particle concentration (20 nM), whilst both COOH and NH(2) (PEG) QDs caused reduced cell viability and cell membrane permeability after 24 and 48 h exposure at 80 nM. Subsequent analysis of the elements that constitute the QD core, core/shell and (organic QD) surface coating showed that the surface coating drives QD toxicity. Elemental analysis (ICP-AES) after 48 h, however, also observed a release of Cd from organic QDs. In conclusion, both the specific surface coating and core material can have a significant impact on QD toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degradation of non-volatile organic compounds-environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)-in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0m s(-1) (3200Lmin(-1)), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10Lmin(-1). Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10Hz or 50Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative "degradation" efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general introduction to the state of the art in modeling metal organic materials using transferable atomic multipoles is provided. The method is based on the building block partitioning of the electron density, which is illustrated with some examples of potential applications and with detailed discussions of the advantages and pitfalls. The interactions taking place between building blocks are summarized and are used to discuss the properties that can be calculated.