42 resultados para optimization, heuristic, solver, operations, research
Resumo:
Offset printing is a common method to produce large amounts of printed matter. We consider a real-world offset printing process that is used to imprint customer-specific designs on napkin pouches. The print- ing technology used yields a number of specific constraints. The planning problem consists of allocating designs to printing-plate slots such that the given customer demand for each design is fulfilled, all technologi- cal and organizational constraints are met and the total overproduction and setup costs are minimized. We formulate this planning problem as a mixed-binary linear program, and we develop a multi-pass matching-based savings heuristic. We report computational results for a set of problem instances devised from real-world data.
Resumo:
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.
Resumo:
The purpose of the internet-based teachware mySCM is that students of economics, informatics and industrial engineering get familiar with quantitative methods for supply chain management. Input-output-relationships of various optimization methods can be detected by sampling input values, parameters, and alternative methods for the same problem. Students can gain extra benefits by passing so-called mini-exams that motivate active learning. mySCM can be used for free, round-the-clock, and any place where access to the Internet is available.
Resumo:
The Solver Add-in of Microsoft Excel is widely used in courses on Operations Research and in industrial applications. Since the 2010 version of Microsoft Excel, the Solver Add-in comprises a so-called evolutionary solver. We analyze how this metaheuristic can be applied to the resource-constrained project scheduling problem (RCPSP). We present an implementation of a schedule-generation scheme in a spreadsheet, which combined with the evolutionary solver can be used for devising good feasible schedules. Our computational results indicate that using this approach, non-trivial instances of the RCPSP can be (approximately) solved to optimality.
Resumo:
We present a real-world staff-assignment problem that was reported to us by a provider of an online workforce scheduling software. The problem consists of assigning employees to work shifts subject to a large variety of requirements related to work laws, work shift compatibility, workload balancing, and personal preferences of employees. A target value is given for each requirement, and all possible deviations from these values are associated with acceptance levels. The objective is to minimize the total number of deviations in ascending order of the acceptance levels. We present an exact lexicographic goal programming MILP formulation and an MILP-based heuristic. The heuristic consists of two phases: in the first phase a feasible schedule is built and in the second phase parts of the schedule are iteratively re-optimized by applying an exact MILP model. A major advantage of such MILP-based approaches is the flexibility to account for additional constraints or modified planning objectives, which is important as the requirements may vary depending on the company or planning period. The applicability of the heuristic is demonstrated for a test set derived from real-world data. Our computational results indicate that the heuristic is able to devise optimal solutions to non-trivial problem instances, and outperforms the exact lexicographic goal programming formulation on medium- and large-sized problem instances.