41 resultados para oblique-wave radiation and diffraction
Resumo:
OBJECTIVES The aim of this study was to compare the right (RV) and left (LV) ventricular Tei indices obtained by pulsed-wave Doppler (PD) and tissue Doppler (TD) methods in fetuses with structurally normal and abnormal hearts. METHODS This was a retrospective cross-sectional study of 147 fetuses that had a fetal echocardiogram and Tei index measured during a 2-year period. The RV and LV Tei indices were measured using both PD and TD methods. The difference between the two methods of Tei index measurement was tested using paired sample t-test, Pearson correlation coefficient was used to examine their relationship, and the agreement between the methods was tested using Bland-Altman analysis. RESULTS A total of 87 fetuses had normal hearts and 60 had a congenital heart defect. Both PD and TD Tei indices were measured successfully from at least one ventricle in 123 cases and from both ventricles in 110 cases. The mean TD Tei index was significantly higher than the mean PD Tei index for both ventricles (P < 0.0001). There was a weak but statistically significant correlation between the PD and TD Tei indices of the right ventricle (r = 0.20, P = 0.029), whereas the PD and TD Tei indices of the left ventricle did not correlate significantly (r = 0.04, P = 0.684). When pairs of Tei indices measured by two different methods (123 pairs for the right ventricle and 111 for the left ventricle) were tested with Bland-Altman analysis, the bias and precision were 0.147 and 0.254, respectively, for the right ventricle, and 0.299 and 0.276, respectively, for the left ventricle. CONCLUSIONS Correlation between Tei indices measured by PD and TD methods is weak and the agreement between individual measurements is poor. Therefore, they should not be used interchangeably in the assessment of fetal cardiac function.
Resumo:
We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N–75°N and negative anomalies at 25°N–45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January–March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.
Resumo:
In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.
Resumo:
BACKGROUND Exposure to medium or high doses of ionizing radiation is a known risk factor for cancer in children. The extent to which low dose radiation from natural sources contributes to the risk of childhood cancer remains unclear. OBJECTIVES In a nationwide census-based cohort study, we investigated whether the incidence of childhood cancer was associated with background radiation from terrestrial gamma and cosmic rays. METHODS Children aged <16 years in the Swiss National Censuses in 1990 and 2000 were included. The follow-up period lasted until 2008 and incident cancer cases were identified from the Swiss Childhood Cancer Registry. A radiation model was used to predict dose rates from terrestrial and cosmic radiation at locations of residence. Cox regression models were used to assess associations between cancer risk and dose rates and cumulative dose since birth. RESULTS Among 2,093,660 children included at census, 1,782 incident cases of cancer were identified including 530 with leukemia, 328 with lymphoma, and 423 with a tumor of the central nervous system (CNS). Hazard ratios for each mSv increase in cumulative dose of external radiation were 1.03 (95% CI: 1.01, 1.05) for any cancer, 1.04 (1.00, 1.08) for leukemia, 1.01 (0.96, 1.05) for lymphoma, and 1.04 (1.00, 1.08) for CNS tumors. Adjustment for a range of potential confounders had little effect on the results. CONCLUSIONS Our study suggests that background radiation may contribute to the risk of cancer in children including leukemia and CNS tumors.
Resumo:
OBJECTIVE: The benefit of postoperative radiation for advanced primary parotid carcinoma has been reported previously, whereas studies to evaluate the usefulness of postoperative radiation for T1 and T2 parotid carcinomas have never been performed. STUDY DESIGN AND SETTING: Retrospective analysis on 58 previously untreated patients with T1 and T2 parotid carcinomas. In 34 patients, postoperative radiation was included in the treatment protocol and in 24 patients, no postoperative radiation was applied. RESULTS: A local recurrence was observed in 8 of 24 (33%) patients without and in 1 of 34 (3%) patients with postoperative radiation (P < 0.5). The 5-year actuarial and disease-free survival rate was 83% and 70% for patients without postoperative radiation and 93% and 92% for patients with postoperative radiation. CONCLUSION AND SIGNIFICANCE: Local recurrence was less often observed in patients with postoperative radiation. Nevertheless, prospective randomized studies are needed to confirm the usefulness of postoperative radiation in early carcinomas. EBM rating: B-3b.
Resumo:
Whether interspecific hybridization is important as a mechanism that generates biological diversity is a matter of controversy. Whereas some authors focus on the potential of hybridization as a source of genetic variation, functional novelty and new species, others argue against any important role, because reduced fitness would typically render hybrids an evolutionary dead end. By drawing on recent developments in the genetics and ecology of hybridization and on principles of ecological speciation theory, I develop a concept that reconciles these views and adds a new twist to this debate. Because hybridization is common when populations invade new environments and potentially elevates rates of response to selection, it predisposes colonizing populations to rapid adaptive diversification under disruptive or divergent selection. I discuss predictions and suggest tests of this hybrid swarm theory of adaptive radiation and review published molecular phylogenies of adaptive radiations in light of the theory. Some of the confusion about the role of hybridization in evolutionary diversification stems from the contradiction between a perceived necessity for cessation of gene flow to enable adaptive population differentiation on the one hand [1], and the potential of hybridization for generating adaptive variation, functional novelty and new species 2, 3 and 4 on the other. Much progress in the genetics 5, 6, 7, 8 and 9 and ecology of hybridization 9, 10 and 11, and in our understanding of the role of ecology in speciation (see Glossary) 12, 13 and 14 make a re-evaluation timely. Whereas botanists traditionally stressed the diversity-generating potential of hybridization 2, 3 and 14, zoologists traditionally saw it as a process that limits diversification [1] and refer to it mainly in the contexts of hybrid zones (Box 1) and reinforcement of reproductive isolation [15]. Judging by the wide distribution of allopolyploidy among plants, many plant species might be of direct hybrid origin or descended from a hybrid species in the recent past [16]. The ability to reproduce asexually might explain why allopolyploid hybrid species are more common in plants than in animals. Allopolyploidy arises when meiotic mismatch of parental chromosomes or karyotypes causes hybrid sterility. Mitotic error, duplicating the karyotype, can restore an asexually maintained hybrid line to fertility. Although bisexual allopolyploid hybrid species are not uncommon in fish [17] and frogs [18], the difficulty with which allopolyploid animals reproduce, typically requiring gynogenesis[19], makes establishment and survival of allopolyploid animal species difficult.
Resumo:
We examined outcomes and trends in surgery and radiation use for patients with locally advanced esophageal cancer, for whom optimal treatment isn't clear. Trends in surgery and radiation for patients with T1-T3N1M0 squamous cell or adenocarcinoma of the mid or distal esophagus in the Surveillance, Epidemiology, and End Results database from 1998 to 2008 were analyzed using generalized linear models including year as predictor; Surveillance, Epidemiology, and End Results doesn't record chemotherapy data. Local treatment was unimodal if patients had only surgery or radiation and bimodal if they had both. Five-year cancer-specific survival (CSS) and overall survival (OS) were analyzed using propensity-score adjusted Cox proportional-hazard models. Overall 5-year survival for the 3295 patients identified (mean age 65.1 years, standard deviation 11.0) was 18.9% (95% confidence interval: 17.3-20.7). Local treatment was bimodal for 1274 (38.7%) and unimodal for 2021 (61.3%) patients; 1325 (40.2%) had radiation alone and 696 (21.1%) underwent only surgery. The use of bimodal therapy (32.8-42.5%, P = 0.01) and radiation alone (29.3-44.5%, P < 0.001) increased significantly from 1998 to 2008. Bimodal therapy predicted improved CSS (hazard ratios [HR]: 0.68, P < 0.001) and OS (HR: 0.58, P < 0.001) compared with unimodal therapy. For the first 7 months (before survival curve crossing), CSS after radiation therapy alone was similar to surgery alone (HR: 0.86, P = 0.12) while OS was worse for surgery only (HR: 0.70, P = 0.001). However, worse CSS (HR: 1.43, P < 0.001) and OS (HR: 1.46, P < 0.001) after that initial timeframe were found for radiation therapy only. The use of radiation to treat locally advanced mid and distal esophageal cancers increased from 1998 to 2008. Survival was best when both surgery and radiation were used.
Resumo:
Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.