56 resultados para nonorthogonal contrasts
Resumo:
On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.
Resumo:
Mesoscopic 3D imaging has become a widely used optical imaging technique to visualize intact biological specimens. Selective plane illumination microscopy (SPIM) visualizes samples up to a centimeter in size with micrometer resolution by 3D data stitching but is limited to fluorescent contrast. Optical projection tomography (OPT) works with fluorescent and nonfluorescent contrasts, but its resolution is limited in large samples. We present a hybrid setup (OPTiSPIM) combining the advantages of each technique. The combination of fluorescent and nonfluorescent high-resolution 3D data into integrated datasets enables a more extensive representation of mesoscopic biological samples. The modular concept of the OPTiSPIM facilitates incorporation of the transmission OPT modality into already established light sheet based imaging setups.
Resumo:
Ancient Kinneret (Tēl Kinrōt [Hebrew]; Tell el-ʿOrēme [Arabic]) is located on a steep limestone hill on the northwestern shores of the Sea of Galilee (2508.7529 [NIG]). The site, whose settlement history began sometime during the Pottery-Neolithic or the early Chalcolithic period, is emerging as one of the major sites for the study of urban life in the Southern Levant during the Early Iron Age (c. 1130–950 BCE). Its size, accessibility by major trade routes, and strategic location between different spheres of cultural and political influence make Tēl Kinrōt an ideal place for studying the interaction of various cultures on urban sites, as well as to approach questions of ethnicity and regionalism during one of the most debated periods in the history of the ancient Levant. The paper will briefly discuss the settlement history of the site during the Early Iron Age. However, the main focus will lie on the material culture of the late Iron Age IB city that rapidly evolved to a regional center during the transition from the 11th to the 10th century BCE. During this period, ancient Kinneret features a multitude of cultural influences that reach from Egypt via the Central Hill Country until the Northern parts of Syria and the Amuq region. While there are indisputably close ties with the ‘Aramaean’ realm, there are also strong indications that there were – at the same time – vivid socio-economic links with the West, i.e. the Southern and Northern Mediterranean coasts and their hinterland. It will be argued that the resulting ‘cultural blend’ is a typical characteristic of the material culture of the Northern Jordan Rift Valley in the advent of the emerging regional powers of the Iron Age II.
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing–dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity.
Resumo:
The N-H center dot center dot center dot pi hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr center dot Bz, Pyr center dot Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H center dot center dot center dot pi hydrogen bond to the benzene ring. The pyrrole is tipped by omega(S(0)) = +/- 13 degrees relative to the surface normal of Bz. The N center dot center dot center dot ring distance is 3.13 angstrom. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle omega(S(1)) = +/- 21 degrees. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H center dot center dot center dot pi interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1) <- S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr center dot Bz in the same region exhibits a weak 0(0)(0) band that is red-shifted by 58 cm(-1) relative to that of Bz (38 086 cm(-1)). The origin appears due to symmetry-breaking of the p-electron system of Bz by the asymmetric pyrrole NH center dot center dot center dot pi hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0(0)(0) band. The Bz moiety in Pyr center dot Bz exhibits a 6a(0)(1) band at 0(0)(0) + 518 cm(-1) that is about 20x more intense than the origin band. The symmetry breaking by the NH center dot center dot center dot pi hydrogen bond splits the degeneracy of the v(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by similar to 6 cm(-1). Both the 0(0)(0) and 6(0)(1) bands of Pyr center dot Bz carry a progression in the low-frequency (10 cm(-1)) excited-state tipping vibration omega', in agreement with the change of the omega tipping angle predicted by SCS-MP2 and SCS-CC2 calculations.
Resumo:
Fossils of chironomid larvae (non-biting midges) preserved in lake sediments are well-established palaeotemperature indicators which, with the aid of numerical chironomid-based inference models (transfer functions), can provide quantitative estimates of past temperature change. This approach to temperature reconstruction relies on the strong relationship between air and lake surface water temperature and the distribution of individual chironomid taxa (species, species groups, genera) that has been observed in different climate regions (arctic, subarctic, temperate and tropical) in both the Northern and Southern hemisphere. A major complicating factor for the use of chironomids for palaeoclimate reconstruction which increases the uncertainty associated with chironomid-based temperature estimates is that the exact nature of the mechanism responsible for the strong relationship between temperature and chironomid assemblages in lakes remains uncertain. While a number of authors have provided state of the art overviews of fossil chironomid palaeoecology and the use of chironomids for temperature reconstruction, few have focused on examining the ecological basis for this approach. Here, we review the nature of the relationship between chironomids and temperature based on the available ecological evidence. After discussing many of the surveys describing the distribution of chironomid taxa in lake surface sediments in relation to temperature, we also examine evidence from laboratory and field studies exploring the effects of temperature on chironomid physiology, life cycles and behaviour. We show that, even though a direct influence of water temperature on chironomid development, growth and survival is well described, chironomid palaeoclimatology is presently faced with the paradoxical situation that the relationship between chironomid distribution and temperature seems strongest in relatively deep, thermally stratified lakes in temperate and subarctic regions in which the benthic chironomid fauna lives largely decoupled from the direct influence of air and surface water temperature. This finding suggests that indirect effects of temperature on physical and chemical characteristics of lakes play an important role in determining the distribution of lake-living chironomid larvae. However, we also demonstrate that no single indirect mechanism has been identified that can explain the strong relationship between chironomid distribution and temperature in all regions and datasets presently available. This observation contrasts with the previously published hypothesis that climatic effects on lake nutrient status and productivity may be largely responsible for the apparent correlation between chironomid assemblage distribution and temperature. We conclude our review by summarizing the implications of our findings for chironomid-based palaeoclimatology and by pointing towards further avenues of research necessary to improve our mechanistic understanding of the chironomid-temperature relationship.
Resumo:
The Mediterranean Region has many morphologic, geographical, historical, and societal characteristics, which make its climate scientifically interesting. The concept of Mediterranean climate is characterized by mild wet winters and warm to hot, dry summers and occur on the west side of continents between about 30° and 40° latitude. However, the presence of a relatively large mass of water is unique to the actual Mediterranean region. The Mediterranean Sea is a marginal and semi-enclosed sea; it is located on the western side of a large continental area and is surrounded by Europe to the North, Africa to the South, and Asia to the East. The chapter discusses that the climate of the Mediterranean region is to a large extent forced by planetary scale patterns. The time and space behavior of the regional features associated with such large-scale forcing is complex. Orography and land–sea distribution play an important role establishing the climate at basin scale and its teleconnections with global patterns. Different levels of services of readiness to emergencies, technological, and economic resources are likely to result in very different adaptation capabilities to environmental changes and new problems. The different economic situations and demographic trends are likely to produce contrasts and conflicts in a condition of limited available resources and environmental stress.
Resumo:
Combustion-derived and synthetic nano-sized particles (NSP) have gained considerable interest among pulmonary researchers and clinicians for two main reasons: 1) Inhalation exposure to combustion-derived NSP was associated with increased pulmonary and cardiovascular morbidity and mortality as suggested by epidemiological studies. Experimental evidence has provided a mechanistic picture of the adverse health effects associated with inhalation of combustion-derived and synthetic NSP. 2) The toxicological potential of NSP contrasts with the potential application of synthetic NSP in technological as well as medicinal settings with the latter including the use of NSP as diagnostics or therapeutics. In order to shed light on this paradox, this article aims to highlight recent findings about the interaction of inhaled NSP with the structures of the respiratory tract including surfactant and alveolar macrophages and epithelial cells. Cellular responses to NSP exposure include the generation of reactive oxygen species and the induction of an inflammatory response. Furthermore, this review places special emphasis on methodological differences between experimental studies and the caveats associated with the dose metrics and points out ways to overcome inherent methodological problems. Key words: electron tomography, surfactant, translocation, oxidative stress, inflammation.
Resumo:
The double-echo-steady-state (DESS) sequence generates two signal echoes that are characterized by a different contrast behavior. Based on these two contrasts, the underlying T2 can be calculated. For a flip-angle of 90 degrees , the calculated T2 becomes independent of T1, but with very low signal-to-noise ratio. In the present study, the estimation of cartilage T2, based on DESS with a reduced flip-angle, was investigated, with the goal of optimizing SNR, and simultaneously minimizing the error in T2. This approach was validated in phantoms and on volunteers. T2 estimations based on DESS at different flip-angles were compared with standard multiecho, spin-echo T2. Furthermore, DESS-T2 estimations were used in a volunteer and in an initial study on patients after cartilage repair of the knee. A flip-angle of 33 degrees was the best compromise for the combination of DESS-T2 mapping and morphological imaging. For this flip angle, the Pearson correlation was 0.993 in the phantom study (approximately 20% relative difference between SE-T2 and DESS-T2); and varied between 0.429 and 0.514 in the volunteer study. Measurements in patients showed comparable results for both techniques with regard to zonal assessment. This DESS-T2 approach represents an opportunity to combine morphological and quantitative cartilage MRI in a rapid one-step examination.
Resumo:
Buttressing is a trait special to tropical trees but explanations for its occurrence remain inconclusive. The two main hypotheses are that they provide structural support and/or promote nutrient acquisition. Studies of the first are common but the second has received much less attention. Architectural measurements were made on adult and juvenile trees of the ectomycorrhizal species Microberlinia bisulcata, in Korup (Cameroon). Buttressing on this species is highly distinctive with strong lateral extension of surface roots of the juveniles leading to a mature buttress system of a shallow spreading form on adults. This contrasts with more vertical buttresses, closer to the stem, found on many other tropical tree species. No clear relationship between main buttress and large branch distribution was found. Whilst this does not argue against the essential structural role of buttresses for these very large tropical trees, the form on M. bisulcata does suggest a likely second role, that of aiding nutrient acquisition. At the Korup site, with its deep sandy soils of very low phosphorus status, and where most nutrient cycling takes place in a thin surface layer of fine roots and mycorrhizas, it appears that buttress form could develop from soil-surface root exploration for nutrients by juvenile trees. It may accordingly allow M. bisulcata to attain the higher greater competitive ability, faster growth rate, and maximum tree size that it does compared with other co-occurring tree species. For sites across the tropics in general, the degree of shallowness and spatial extension of buttresses of the dominant species is hypothesized to increase with decreasing nutrient availability.
Resumo:
The Andean piedmont of eastern Bolivia is situated at the southern margin of Amazonia characterized by an overall humid climate regime with a marked contrast between the rainy and dry seasons. The nearby Subandean foothills deliver abundant sandy sediments to the piedmont, leading to a complex array of sediments and paleosol horizons. Within this setting, the presented study analyzes four profiles of paleosol-sediment-sequences along incised ephemeral streams near Santa Cruz de la Sierra with a focus on past pedogenic variability in the context of the regional late Quaternary geomorphic and environmental evolution. Based on field observations, micromorphological analysis, geochemical and clay mineralogical data five classes of paleosol horizons could be distinguished. The individual paleosol horizons as well as the sediments, in which they developed, were interpreted regarding their paleoenvironmental significance, taking into consideration the various controls on soil formation with particular focus on changes of local environmental conditions through time. Thus, three different pathways of soil formation were established. On the late Quaternary timescale, the results suggest a strong relation between paleoenvironmental conditions (climate, vegetation etc.), soil environment (soil water flow, micro-environment) and the type of paleosol horizons developed in the study area. The formation of “red beds” (Bw horizons) implies very dry soil environments under dominantly dry conditions, which seem to have prevailed in the study area some time before ∼ 18 cal ka BP. Moderately dry but markedly seasonal environmental conditions with a long dry season and strong seasonal contrasts in soil water flow could explain the formation of moderately developed Bwt horizons around ∼ 18 cal ka BP and much of the mid-Holocene. The formation of Bt horizons and/or clay lamellae in relation to intense neoformation of clay and dominant clay illuviation by soil water points to wet conditions similar to today, which have probably prevailed in the study area before ∼ 8 cal ka BP and since ∼ 5 cal ka BP.
Resumo:
External forcing and internal dynamics result in climate system variability ranging from sub-daily weather to multi-centennial trends and beyond1, 2. State-of-the-art palaeoclimatic methods routinely use hydroclimatic proxies to reconstruct temperature (for example, refs 3, 4), possibly blurring differences in the variability continuum of temperature and precipitation before the instrumental period. Here, we assess the spectral characteristics of temperature and precipitation fluctuations in observations, model simulations and proxy records across the globe. We find that whereas an ensemble of different general circulation models represents patterns captured in instrumental measurements, such as land–ocean contrasts and enhanced low-frequency tropical variability, the tree-ring-dominated proxy collection does not. The observed dominance of inter-annual precipitation fluctuations is not reflected in the annually resolved hydroclimatic proxy records. Likewise, temperature-sensitive proxies overestimate, on average, the ratio of low- to high-frequency variability. These spectral biases in the proxy records seem to propagate into multi-proxy climate reconstructions for which we observe an overestimation of low-frequency signals. Thus, a proper representation of the high- to low-frequency spectrum in proxy records is needed to reduce uncertainties in climate reconstruction efforts.
Resumo:
Tropical cyclogenesis is generally considered to occur in regions devoid of baroclinic structures; however, an appreciable number of tropical cyclones (TCs) form in baroclinic environments each year. A global climatology of these baroclinically influenced TC developments is presented in this study. An objective classification strategy is developed that focuses on the characteristics of the environmental state rather than on properties of the vortex, thus allowing for a pointwise “development pathway” classification of reanalysis data. The resulting climatology shows that variability within basins arises primarily as a result of local surface thermal contrasts and the positions of time-mean features on the subtropical tropopause. The pathway analyses are sampled to generate a global climatology of 1948–2010 TC developments classified by baroclinic influence: nonbaroclinic (70%), low-level baroclinic (9%), trough induced (5%), weak tropical transition (11%), and strong tropical transition (5%). All basins other than the North Atlantic are dominated by nonbaroclinic events; however, there is extensive interbasin variability in secondary development pathways. Within each basin, subregions and time periods are identified in which the relative importance of the development pathways also differs. The efficiency of tropical cyclogenesis is found to be highly dependent on development pathway. The peak efficiency defined in the classification subspace straddles the nonbaroclinic/trough-induced boundary, suggesting that the optimal environment for TC development includes a baroclinic contribution from an upper-level disturbance. By assessing the global distribution of baroclinically influenced TC formations, this study identifies regions and pathways whose further study could yield improvements in our understanding of this important subset of TC developments.