94 resultados para laser ablation inductively coupled mass spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in deformed rocks. To do so quantitatively, it is necessary to quantify the intrinsic magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in mafic igneous and metamorphic rocks and often define rock texture due to their general prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to felsic igneous rocks and in some metamorphic rock types, because they have a high Fe concentration and they can develop a strong crystallographic preferred orientation. In this study, the AMS is characterized in 28 single crystals and I crystal aggregate of compositionally diverse clino- and ortho-amphiboles. High-field methods were used to isolate the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic inclusions that often occur in amphibole crystals. Laue imaging, laser ablation-inductively coupled plasma-mass spectrometry, and Mossbauer spectroscopy were performed to relate the magnetic anisotropy to crystal structure and Fe concentration. The minimum susceptibility is parallel to the crystallographic a*-axis and the maximum susceptibility is generally parallel to the crystallographic b-axis in tremolite, actinolite, and hornblende. Gedrite has its minimum susceptibility along the a-axis, and maximum susceptibility aligned with c. In richterite, however, the intermediate susceptibility is parallel to the b-axis and the minimum and maximum susceptibility directions are distributed in the a-c plane. The degree of anisotropy, k', increases generally with Fe concentration, following a linear trend: k' = 1.61 x 10(-9) Fe - 1.17 x 10(-9) m(3)/kg. Additionally, it may depend on the Fe2+/Fe3+ ratio. For most samples, the degree of anisotropy increases by a factor of approximately 8 upon cooling from room temperature to 77 K. Fen-oactinolite, one pargasite crystal and riebeckite show a larger increase, which is related to the onset of local ferromagnetic (s.l.) interactions below about 100 K. This comprehensive data set increases our understanding of the magnetic structure of amphiboles, and it is central to interpreting magnetic fabrics of rocks whose AMS is controlled by amphibole minerals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SBR759 is a novel polynuclear iron(III) oxide–hydroxide starch·sucrose·carbonate complex being developed for oral use in chronic kidney disease (CKD) patients with hyperphosphatemia on hemodialysis. SBR759 binds inorganic phosphate released by food uptake and digestion in the gastro-intestinal tract increasing the fecal excretion of phosphate with concomitant reduction of serum phosphate concentrations. Considering the high content of ∼20% w/w covalently bound iron in SBR759 and expected chronic administration to patients, absorption of small amounts of iron released from the drug substance could result in potential iron overload and toxicity. In a mechanistic iron uptake study, 12 healthy male subjects (receiving comparable low phosphorus-containing meal typical for CKD patients: ≤1000 mg phosphate per day) were treated with 12 g (divided in 3 × 4 g) of stable 58Fe isotope-labeled SBR759. The ferrokinetics of [58Fe]SBR759-related total iron was followed in blood (over 3 weeks) and in plasma (over 26 hours) by analyzing with high precision the isotope ratios of the natural iron isotopes 58Fe, 57Fe, 56Fe and 54Fe by multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Three weeks following dosing, the subjects cumulatively absorbed on average 7.8 ± 3.2 mg (3.8–13.9 mg) iron corresponding to 0.30 ± 0.12% (0.15–0.54%) SBR759-related iron which amounts to approx. 5-fold the basal daily iron absorption of 1–2 mg in humans. SBR759 was well-tolerated and there was no serious adverse event and no clinically significant changes in the iron indices hemoglobin, hematocrit, ferritin concentration and transferrin saturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (< 1 GW/cm2) is used to achieve stable ion formation and low sample consumption. In comparison to our previous laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass spectrometric analysis of elemental and isotopic compositions of several NIST standards is performed by a miniature laser ablation/ionisation reflectron-type time-of-flight mass spectrometer (LMS) using a fs-laser ablation ion source (775 nm, 190 fs, 1 kHz). The results of the mass spectrometric studies indicate that in a defined range of laser irradiance (fluence) and for a certain number of accumulations of single laser shot spectra, the measurements of isotope abundances can be conducted with a measurement accuracy at the per mill level and at the per cent level for isotope concentrations higher and lower than 100 ppm, respectively. Also the elemental analysis can be performed with a good accuracy. The LMS instrument combined with a fs-laser ablation ion source exhibits similar detection efficiency for both metallic and non-metallic elements. Relative sensitivity coefficients were determined and found to be close to one, which is of considerable importance for the development of standard-less instruments. Negligible thermal effects, sample damage and excellent characteristics of the fs-laser beam are thought to be the main reason for substantial improvement of the instrumental performance compared to other laser ablation mass spectrometers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured the elemental composition on a sample of Allende meteorite with a miniature laser ablation mass spectrometer. This Laser Mass Spectrometer (LMS) has been designed and built at the University of Bern in the Department of Space Research and Planetary Sciences with the objective of using such an instrument on a space mission. Utilising the meteorite Allende as the test sample in this study, it is demonstrated that the instrument allows the in situ determination of the elemental composition and thus mineralogy and petrology of untreated rocky samples, particularly on planetary surfaces. In total, 138 measurements of elemental compositions have been carried out on an Allende sample. The mass spectrometric data are evaluated and correlated with an optical image. It is demonstrated that by illustrating the measured elements in the form of mineralogical maps, LMS can serve as an element imaging instrument with a very high spatial resolution of µm scale. The detailed analysis also includes a mineralogical evaluation and an investigation of the volatile element content of Allende. All findings are in good agreement with published data and underline the high sensitivity, accuracy and capability of LMS as a mass analyser for space exploration.