61 resultados para great tit
Resumo:
Mounting an immune response against pathogens incurs costs to organisms by its effects on important life-history traits, such as reproductive investment and survival. As shown recently, immune activation produces large amounts of reactive species and is suggested to induce oxidative stress. Sperm are highly susceptible to oxidative stress, which can negatively impact sperm function and ultimately male fertilizing efficiency. Here we address the question as to whether mounting an immune response affects sperm quality through the damaging effects of oxidative stress. It has been demonstrated recently in birds that carotenoid-based ornaments can be reliable signals of a male's ability to protect sperm from oxidative damage. In a full-factorial design, we immune-challenged great tit males while simultaneously increasing their vitamin E availability, and assessed the effect on sperm quality and oxidative damage. We conducted this experiment in a natural population and tested the males' response to the experimental treatment in relation to their carotenoid-based breast coloration, a condition-dependent trait. Immune activation induced a steeper decline in sperm swimming velocity, thus highlighting the potential costs of an induced immune response on sperm competitive ability and fertilizing efficiency. We found sperm oxidative damage to be negatively correlated with sperm swimming velocity. However, blood resistance to a free-radical attack (a measure of somatic antioxidant capacity) as well as plasma and sperm levels of oxidative damage (lipid peroxidation) remained unaffected, thus suggesting that the observed effect did not arise through oxidative stress. Towards the end of their breeding cycle, swimming velocity of sperm of more intensely colored males was higher, which has important implications for the evolution of mate choice and multiple mating in females because females may accrue both direct and indirect benefits by mating with males having better quality sperm.
Resumo:
Sibling and parente-offspring conflicts arise mainly over the amount and distribution of parental care, especially food. In altricial bird species where the young depend on parents for obtaining food, parents may control sibling competition by the choice of their respective provisioning locations. In great tits, the parents use fixed provisioning positions on the nest rim that are determined early in the breeding cycle and maintained until. edging. The two parents may choose positions that are close to each other, or far apart, and thereby increase or relax the pressure for optimal feeding positioning among nestlings. As an inspiration to this study we previously found that the two parents provide food from closer positions if the nest is infested by ectoparasites. Here, we tested the hypothesis that the parental choice of relative provisioning locations could be strategically used to control nestling competition. We forced parents to feed from either one or two provisioning locations and assessed the induced change in nestling movement, weight gain, and food distribution among siblings. We show that the angular distance between male and female locations influences the level of behavioural competition and affects nestling weight gain and food distribution. It is the first evidence for hole-nesting birds, where it was assumed that the nestling closest to the entrance hole was fed first, that the apparent choice of feeding positions by parents could be a way of controlling sibling competition and thereby also taking partial control over the outcome of parente-offspring conflict. (c) 2007 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
A parasite-induced maternal effect can reduce survival times of fleas feeding on great tit nestlings
Ultraviolet reflectance of plumage for parent offspring communication in the great tit (Parus major)
Resumo:
Both predators and parasites can elicit behavioral and physiological responses in prey and hosts, respectively. These responses may involve the reallocation of resources and may thus limit each other. We investigated the effects of concurrent pre-laying exposure of great tit females (Parus major) to both a simulated predation risk and a nest-based ectoparasite, the hen flea (Ceratophyllus gallinae), on nestling growth and development. We manipulated perceived predation risk using models and vocalizations of sparrowhawks (Accipiter nisus). At the start of incubation, we swapped whole clutches between treated and untreated nests to separate pre-laying maternal effects from posthatching effects. Since costs and benefits of maternal responses to parasites need to be assessed under parasite pressure, we infested half of the rearing nests with hen fleas. Parasites had negative effects on mass gain and wing growth, both via maternal effects and via direct exposure of nestlings, whereas maternal predation risk had no significant effect. The interaction between predator and parasite treatments was not significant and, thus, suggests the absence of a trade-off between the 2 stressors operating at the level of maternal effects. Alternatively, the complexity of the design, despite a relatively large sample size, may have limited the power for detection of this expected trade-off.
Resumo:
1. Egg yolks contain carotenoids that protect biological molecules against free-radical damage and promote maturation of the immune system. Availability of carotenoids to birds is often limited. Trade-offs can thus arise in the allocation of carotenoids to different physiological functions, and mothers may influence the immunocompetence of nestlings by modulating the transfer of carotenoid to the yolk.;2. In the great tit Parus major, we experimentally manipulated the dietary supply of carotenoid to mothers, and partially cross-fostered hatchlings to investigate the effect of an increased availability of carotenoids during egg laying on immunocompetence of nestlings.;3. In addition, we infested half of the nests with hen fleas Ceratophyllus gallinae to investigate the relationship between carotenoid availability, resistance to ectoparasites and immunocompetence.;4. We found that the procedure of cross-fostering can reduce the immune response of nestlings, but this effect can be compensated by the maternally transferred carotenoids. Cross-fostered nestlings of carotenoid-supplemented females show a similar immune response to non-cross-fostered nestlings, while cross-fostered nestlings of control females mounted a weaker cell-mediated immune response. This suggests that yolk carotenoids may help nestlings to cope with stress, for example the one generated by cross-fostering and/or they may enhance nestling competitiveness.;5. There was no statistically significant interaction between parasite and carotenoid treatments, as would be expected if carotenoids helped nestlings to fight parasites. Under parasite pressure, however, lighter nestlings raised a lower immune response, while the immune response was only weakly correlated with body mass in uninfested nests.
Resumo:
Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.
Resumo:
The interface between climate and ecosystem structure and function is incompletely understood, partly because few ecological records start before the recent warming phase. Here, we analyse an exceptional 100-yr long record of the great tit (Parus major) population in Switzerland in relation to climate and habitat phenology. Using structural equation analysis, we demonstrate an uninterrupted cascade of significant influences of the large-scale atmospheric circulation (North-Atlantic Oscillation, NAO, and North-sea – Caspian Pattern, NCP) on habitat and breeding phenology, and further on fitness-relevant life history traits within great tit populations. We then apply the relationships of this analysis to reconstruct the circulation-driven component of fluctuations in great tit breeding phenology and productivity on the basis of new seasonal NAO and NCP indices back to 1500 AD. According to the structural equation model, the multi-decadal oscillation of the atmospheric circulation likely led to substantial variation in habitat phenology, productivity and consequently, tit population fluctuations with minima during the "Maunder Minimum" (∼ 1650–1720) and the Little Ice Age Type Event I (1810–1850). The warming since 1975 was not only related with a quick shift towards earlier breeding, but also with the highest productivity since 1500, and thus, the impact of the NAO and NCP has contributed to an unprecedented increase of the population. A verification of the structural equation model against two independent data series (1970–2000 and 1750–1900) corroborates that the retrospective model reliably depicts the major long-term NAO/NCP impact on ecosystem parameters. The results suggest a complex cascade of climate effects beginning at a global scale and ending at the level of individual life histories. This sheds light on how large-scale climate conditions substantially affect major life history parameters within a population, and thus influence key ecosystem parameters at the scale of centuries.
Resumo:
The coevolution of parental investment and offspring solicitation is driven by partly different evolutionary interests of genes expressed in parents and their offspring. In species with biparental care, the outcome of this conflict ma!: be influenced by the sexual conflict over parental investment, Models for the resolution of such family conflicts have made so far untested assumptions about genetic variation and covariation in the parental resource provisioning response and the level of offspring solicitation. Using a combination of cross-fostering and begging playback experiments, we show that, in the great tit (Parus major), (i) the begging call intensity of nestlings depends on their common origin, suggesting genetic variation for this begging display, (ii) only mothers respond to begging calls by increased food provisioning, and (iii! the size of the parental response is positively related to the begging call intensity of nestlings in the maternal but not paternal line. This study indicates that genetic covariation, its differential expression in the maternal and paternal lines and/or early environmental and parental effects need to be taken into account when predicting the phenotypic outcome of the conflict over investment between genes expressed in each parent and the offspring. [References: 36]