2 resultados para glaucoma surgery


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: To evaluate the alterations of mean foveal thickness (MFT) and visual acuity (VA) outcomes after uncomplicated cataract surgery in different groups of patients. Methods: This study included eyes of consecutive patients who underwent cataract surgery between November 2007 and June 2009. The patients included in the study were divided into 4 groups, as follows: history-free patients, patients with diabetes mellitus without macular involvement at baseline, patients with glaucoma, and patients with epiretinal membrane (ERM). Preoperatively and at 1, 3 and 6 months postoperatively, patients were evaluated for MFT by optical coherence tomography at the central 1-mm macular zone and for logarithm of the minimum angle of resolution best spectacle-corrected VA (BSCVA). Results: A total of 202 eyes were included in the study. MFT values demonstrated a statistically significant increase (p < 0.01) after cataract surgery in all groups at the first and third postoperative month. The history-free (p = 0.09) and glaucoma (p = 0.19) groups did not demonstrate a statistically significant difference in MFT values between the preoperative and 6-month measurements. MFT values 6 months after cataract surgery in the diabetes and ERM groups remained significantly higher (p < 0.01). Despite these findings, VA increased significantly (p < 0.01) in all groups at all postoperative follow-ups. Conclusions: MFT values increased significantly in all groups at the first and third months after cataract surgery. At 6 months, MFT values returned to preoperative levels in the history-free and glaucoma patients, while they remained significantly higher in the diabetic and ERM patients. Despite these macular alterations, BSCVA improved significantly after cataract surgery in all groups at all postoperative follow-ups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Episcleral vein cauterization (EVC) is used in rats to generate a glaucoma model with high intraocular pressure (IOP). The long-term retinal damage in this glaucoma model, however, has not been accurately quantified. We report the location and amount of retinal ganglion cell (RGC) damage caused by (EVC) induced IOP elevation in two rat strains. IOP was raised in one eye of Wistar (N = 5) and Brown-Norway(B-N)(N = 7) rats by EVC and monitored monthly until IOP in contralateral eyes equalized at 5 months post-surgery. Animals were maintained for 3.5-4.5 additional months. B-N rats (N = 7) that had no EVC served as controls for this strain. Scotopic flash ERGs were recorded at baseline and just prior to euthanasia. Automated counts of all retrogradely labeled RGCs in retinal flat-mounts were determined and compared between contralateral eyes. RGC density maps were constructed and RGC size distribution was determined. Oscillatory potentials in the group of eyes which had elevated IOP were decreased at the time of euthanasia, when IOP had returned to normal. The group of normal B-N rats had similar RGC counts between contralateral eyes. In the experimental group the mean number of RGCs was not significantly different between control and experimental eyes, but 1 of 5 Wistar and 2 of 7 B-N experimental eyes had at least 30% fewer RGCs than contralateral control eyes. Total retinal area in B-N experimental eyes was higher compared to contralateral eyes. Cumulative IOP exposure of the experimental eyes was modestly correlated with RGC loss while oscillatory potentials appeared to be inversely related to RGC loss. In retinas with extensive (> 30% RGC loss) but not complete damage, smaller cells were preserved better than larger ones. The above results indicate that RGC loss in both Wistar and B-N strains is variable after a prolonged elevation of IOP via EVC. Such variability despite equivalent IOP levels and ERG abnormalities, suggests unknown factors that can protect IOP-stressed RGCs. Identification and enhancement of such factors could prove useful for glaucoma therapy.