30 resultados para gas-particle distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

29 parent- and alkyl-polycyclic aromatic hydrocarbons (PAHs), 15 oxygenated-PAHs (OPAHs), 11 nitrated-PAHs (NPAHs) and 4 azaarenes (AZAs) in both the gaseous and particulate phases, as well as the particulate-bound carbon fractions (organic carbon, elemental carbon, char, and soot) in ambient air sampled in March and September 2012 from an urban site in Xi'an, central China were extracted and analyzed. The average concentrations (gaseous+particulate) of 29PAHs, 15OPAHs, 11NPAHs and 4AZAs were 1267.0±307.5, 113.8±46.1, 11.8±4.8 and 26.5±11.8ngm(-3) in March and 784.7±165.1, 67.2±9.8, 9.0±1.5 and 21.6±5.1ngm(-3) in September, respectively. Concentrations of 29PAHs, 15OPAHs and 11NPAHs in particulates were significantly correlated with those of the carbon fractions (OC, EC, char and soot). Both absorption into organic matter in particles and adsorption onto the surface of particles were important for PAHs and OPAHs in both sampling periods, with more absorption occurring in September, while absorption was always the most important process for NPAHs. The total carcinogenic risk of PAHs plus the NPAHs was higher in March. Gaseous compounds, which were not considered in most previous studies, contributed 29 to 44% of the total health risk in March and September, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The penetration, translocation, and distribution of ultrafine and nanoparticles in tissues and cells are challenging issues in aerosol research. This article describes a set of novel quantitative microscopic methods for evaluating particle distributions within sectional images of tissues and cells by addressing the following questions: (1) is the observed distribution of particles between spatial compartments random? (2) Which compartments are preferentially targeted by particles? and (3) Does the observed particle distribution shift between different experimental groups? Each of these questions can be addressed by testing an appropriate null hypothesis. The methods all require observed particle distributions to be estimated by counting the number of particles associated with each defined compartment. For studying preferential labeling of compartments, the size of each of the compartments must also be estimated by counting the number of points of a randomly superimposed test grid that hit the different compartments. The latter provides information about the particle distribution that would be expected if the particles were randomly distributed, that is, the expected number of particles. From these data, we can calculate a relative deposition index (RDI) by dividing the observed number of particles by the expected number of particles. The RDI indicates whether the observed number of particles corresponds to that predicted solely by compartment size (for which RDI = 1). Within one group, the observed and expected particle distributions are compared by chi-squared analysis. The total chi-squared value indicates whether an observed distribution is random. If not, the partial chi-squared values help to identify those compartments that are preferential targets of the particles (RDI > 1). Particle distributions between different groups can be compared in a similar way by contingency table analysis. We first describe the preconditions and the way to implement these methods, then provide three worked examples, and finally discuss the advantages, pitfalls, and limitations of this method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Dynamic ventilation (3)He-MRI is a new method to assess pulmonary gas inflow. As differing airway diameters throughout the ventilatory cycle can influence gas inflow this study intends to investigate the influence of volume and timing of a He gas bolus with respect to the beginning of the tidal volume on inspiratory gas distribution. MATERIALS AND METHODS: An ultrafast 2-dimensional spoiled gradient echo sequence (temporal resolution 100 milliseconds) was used for dynamic ventilation (3)He-MRI of 11 anesthetized and mechanically ventilated pigs. The applied (3)He gas bolus was varied in volume between 100 and 200 mL. A 150-mL bolus was varied in its application time after the beginning of the tidal volume between 0 and 1200 milliseconds. Signal kinetics were evaluated using an in-house developed software after definition of parameters for the quantitative description of (3)He gas inflow. RESULTS: The signal rise time (time interval between signal in the parenchyma reaches 10% and 90% of its maximum) was prolonged with increasing bolus volume. The parameter was shortened with increasing delay of (3)He application after the beginning of the tidal volume. Timing variation as well as volume variation showed no clear interrelation to the signal delay time 10 (time interval between signal in the trachea reaches 50% of its maximum and signal in the parenchyma reaches 10% of its maximum). CONCLUSIONS: Dynamic ventilation (3)He-MRI is able to detect differences in bolus geometry performed by volume variation. Pulmonary gas inflow as investigated by dynamic ventilation (3)He-MRI tends to be accelerated by an increasing application delay of a (3)He gas bolus after the beginning of the tidal volume.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inert gas washout tests, performed using the single- or multiple-breath washout technique, were first described over 60 years ago. As measures of ventilation distribution inhomogeneity, they offer complementary information to standard lung function tests, such as spirometry, as well as improved feasibility across wider age ranges and improved sensitivity in the detection of early lung damage. These benefits have led to a resurgence of interest in these techniques from manufacturers, clinicians and researchers, yet detailed guidelines for washout equipment specifications, test performance and analysis are lacking. This manuscript provides recommendations about these aspects, applicable to both the paediatric and adult testing environment, whilst outlining the important principles that are essential for the reader to understand. These recommendations are evidence based, where possible, but in many places represent expert opinion from a working group with a large collective experience in the techniques discussed. Finally, the important issues that remain unanswered are highlighted. By addressing these important issues and directing future research, the hope is to facilitate the incorporation of these promising tests into routine clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Until August 2004 there were 106 forensic cases examined with postmortem multislice computed tomography (MSCT) and magnetic resonance (MR) imaging before traditional autopsy within the Virtopsy project. Intrahepatic gas (IHG) was a frequent finding in postmortem MSCT examinations. The aim of this study was to investigate its cause and significance. METHODS: There were 84 virtopsy cases retrospectively investigated concerning the occurrence, location, and volume of IHG in postmortem MSCT imaging (1.25 mm collimation, 1.25 mm thickness). We assessed and noted the occurrence of intestinal distention, putrefaction, and systemic gas embolisms and the cause of death, possible open trauma, possible artificial respiration, and the postmortem interval. We investigated the relations between the findings using the contingency table (chi2 test) and the comparison of the postmortem intervals in both groups was performed using the t test in 79 nonputrefied corpses. RESULTS: IHG was found in 47 cases (59.5%). In five of the cases, the IHG was caused or influenced by putrefaction. Gas distribution within the liver of the remaining 42 cases was as follows: hepatic arteries in 21 cases, hepatic veins in 35 cases, and portal vein branches in 13 cases; among which combinations also occurred in 20 cases. The presence of IHG was strongly related to open trauma with systemic gas. Pulmonary barotrauma as occurring under artificial respiration or in drowning also caused IHG. Putrefaction did not seem to influence the occurrence of IHG until macroscopic signs of putrefaction were noticeable. CONCLUSIONS: IHG is a frequent finding in traumatic causes of death and requires a systemic gas embolism. Exceptions are putrefied or burned corpses. Common clinical causes such as necrotic bowel diseases appear rarely as a cause of IHG in our forensic case material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Translocation of nanoparticles (NP) from the pulmonary airways into other pulmonary compartments or the systemic circulation is controversially discussed in the literature. In a previous study it was shown that titanium dioxide (TiO2) NP were "distributed in four lung compartments (air-filled spaces, epithelium/endothelium, connective tissue, capillary lumen) in correlation with compartment size". It was concluded that particles can move freely between these tissue compartments. To analyze whether the distribution of TiO2 NP in the lungs is really random or shows a preferential targeting we applied a newly developed method for comparing NP distributions. METHODS: Rat lungs exposed to an aerosol containing TiO2 NP were prepared for light and electron microscopy at 1 h and at 24 h after exposure. Numbers of TiO2 NP associated with each compartment were counted using energy filtering transmission electron microscopy. Compartment size was estimated by unbiased stereology from systematically sampled light micrographs. Numbers of particles were related to compartment size using a relative deposition index and chi-squared analysis. RESULTS: Nanoparticle distribution within the four compartments was not random at 1 h or at 24 h after exposure. At 1 h the connective tissue was the preferential target of the particles. At 24 h the NP were preferentially located in the capillary lumen. CONCLUSION: We conclude that TiO2 NP do not move freely between pulmonary tissue compartments, although they can pass from one compartment to another with relative ease. The residence time of NP in each tissue compartment of the respiratory system depends on the compartment and the time after exposure. It is suggested that a small fraction of TiO2 NP are rapidly transported from the airway lumen to the connective tissue and subsequently released into the systemic circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic modified oligonucleotides are of interest for diagnostic and therapeutic applications, as their biological stability, pairing selectivity, and binding strength can be considerably increased by the incorporation of unnatural structural elements. Homo-DNA is an oligonucleotide homologue based on dideoxy-hexopyranosyl sugar moieties, which follows the Watson-Crick A-T and G-C base pairing system, but does not hybridize with complementary natural DNA and RNA. Homo-DNA has found application as a bioorthogonal element in templated chemistry applications. The gas-phase dissociation of homo-DNA has been investigated by ESI-MS/MS and MALDI-MS/MS, and mechanistic aspects of its gas-phase dissociation are discussed. Experiments revealed a charge state dependent preference for the loss of nucleobases, which are released either as neutrals or as anions. In contrast to DNA, nucleobase loss from homo-DNA was found to be decoupled from backbone cleavage, thus resulting in stable products. This renders an additional stage of ion activation necessary in order to generate sequence-defining fragment ions. Upon MS(3) of the primary base-loss ion, homo-DNA was found to exhibit unspecific backbone dissociation resulting in a balanced distribution of all fragment ion series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Imager for Low Energetic Neutral Atoms test facility at the University of Bern was developed to investigate, characterize, and quantify physical processes on surfaces that are used to ionize neutral atoms before their analysis in neutral particle-sensing instruments designed for space research. The facility has contributed valuable knowledge of the interaction of ions with surfaces (e.g., fraction of ions scattered from surfaces and angular scattering distribution) and employs a novel measurement principle for the determination of secondary electron emission yields as a function of energy, angle of incidence, particle species, and sample surface for low particle energies. Only because of this test facility it was possible to successfully apply surface-science processes for the new detection technique for low-energetic neutral particles with energies below about 1 keV used in space applications. All successfully flown spectrometers for the detection of low-energetic neutrals based on the particle–surface interaction process use surfaces evaluated, tested, and calibrated in this facility. Many instruments placed on different spacecraft (e.g., Imager for Magnetopause-to-Aurora Global Exploration, Chandrayaan-1, Interstellar Boundary Explorer, etc.) have successfully used this technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neodymium (Nd) isotopes are an important geochemical tool to trace the present and past water mass mixing as well as continental inputs. The distribution of Nd concentrations in open ocean surface waters (0�100 m) is generally assumed to be controlled by lateral mixing of Nd from coastal surface currents and by removal through reversible particle scavenging. However, using 228Ra activity as an indicator of coastal water mass influence, surface water Nd concentration data available on key oceanic transects as a whole do not support the above scenario. From a global compilation of available data, we find that more stratified regions are generally associated with low surface Nd concentrations. This implies that upper ocean vertical supply may be an as yet neglected primary factor in determining the basin-scale variations of surface water Nd concentrations. Similar to the mechanism of nutrients supply, it is likely that stratification inhibits vertical supply of Nd from the subsurface thermocline waters and thus the magnitude of Nd flux to the surface layer. Consistently, the estimated required input flux of Nd to the surface layer to maintain the observed concentrations could be nearly two orders of magnitudes larger than riverine/dust flux, and also larger than the model-based estimation on shelf-derived coastal flux. In addition, preliminary results from modeling experiments reveal that the input from shallow boundary sources, riverine input, and release from dust are actually not the primary factors controlling Nd concentrations most notably in the Pacific and Southern Ocean surface waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS The aim of the study was to examine whether differences in average diameter of low-density lipoprotein (LDL) particles were associated with total and cardiovascular mortality. METHODS AND RESULTS We studied 1643 subjects referred to coronary angiography, who did not receive lipid-lowering drugs. During a median follow-up of 9.9 years, 398 patients died, of these 246 from cardiovascular causes. We calculated average particle diameters of LDL from the composition of LDL obtained by β-quantification. When LDL with intermediate average diameters (16.5-16.8 nm) were used as reference category, the hazard ratios (HRs) adjusted for cardiovascular risk factors for death from any cause were 1.71 (95% CI: 1.31-2.25) and 1.24 (95% CI: 0.95-1.63) in patients with large (>16.8 nm) or small LDL (<16.5 nm), respectively. Adjusted HRs for death from cardiovascular causes were 1.89 (95% CI: 1.32-2.70) and 1.54 (95% CI: 1.06-2.12) in patients with large or small LDL, respectively. Patients with large LDL had higher concentrations of the inflammatory markers interleukin (IL)-6 and C-reactive protein than patients with small or intermediate LDL. Equilibrium density gradient ultracentrifugation revealed characteristic and distinct profiles of LDL particles in persons with large (approximately even distribution of intermediate-density lipoproteins and LDL-1 through LDL-6) intermediate (peak concentration at LDL-4) or small (peak concentration at LDL-6) average LDL particle diameters. CONCLUSIONS Calculated LDL particle diameters identify patients with different profiles of LDL subfractions. Both large and small LDL diameters are independently associated with increased risk mortality of all causes and, more so, due to cardiovascular causes compared with LDL of intermediate size.