62 resultados para frequency dependent parameters
Resumo:
A mechanism commonly suggested to explain the persistence of color polymorphisms in animals is negative frequency-dependent selection. It could result from a social dominance advantage to rare morphs. We tested for this in males of red and blue color morphs of the Lake Victoria cichlid, Pundamilia. Earlier work has shown that males preferentially attack the males of their own morph, while red males are more likely to win dyadic contests with blue males. In order to study the potential contribution of both factors to the morph co-existence, we manipulated the proportion of red and blue males in experimental assemblages and studied its effect on social dominance. We then tried to disentangle the effects of the own-morph attack bias and social dominance of red using simulations. In the experiment, we found that red males were indeed socially dominant to the blue ones, but only when rare. However, blue males were not socially dominant when rare. The simulation results suggest that an own-morph attack bias reduces the social dominance of red males when they are more abundant. Thus, there is no evidence of symmetric negative frequency-dependent selection acting on social dominance, suggesting that additional fitness costs to the red morph must explain their co-existence.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a means to study the function and connectivity of brain areas. The present study addressed the question of hemispheric asymmetry of frontal regions and aimed to further understand the acute effects of high- and low-frequency rTMS on regional cerebral blood flow (rCBF). Sixteen healthy right-handed men were imaged using H(2)(15)O positron emission tomography (PET) immediately after stimulation. High (10 Hz)- and low (1 Hz)-frequency suprathreshold short-duration rTMS was applied over either the left or right dorsolateral prefrontal cortex (DLPFC). Slow and fast rTMS applied over the left DLPFC significantly increased CBF in the stimulated area. Compared to baseline, slow rTMS induced a significant increase in CBF contralateral to the stimulation site, in the right caudate body and in the anterior cingulum. Furthermore, slow rTMS decreased CBF in the orbitofrontal cortex (OFC, ipsilateral to stimulation side). Fast rTMS applied over the right DLPFC was associated with increased activity at the stimulation site, in the bilateral orbitofrontal cortex and in the left medial thalamus compared to 1-Hz rTMS. These results show that rCBF changes induced by prefrontal rTMS differ upon hemisphere stimulated and vary with stimulation frequency. These differential neurophysiological effects of short-train rTMS with respect to side and frequency suggest hemisphere-dependent functional circuits of frontal cortico-subcortical areas.
Resumo:
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.
Resumo:
A population-genetic analysis is performed of a two-locus two-allele model, in which the primary locus has a major effect on a quantitative trait that is under frequency-dependent disruptive selection caused by intraspecific competition for a continuum of resources. The modifier locus determines the degree of dominance at the trait level. We establish the conditions when a modifier allele can invade and when it becomes fixed if sufficiently frequent. In general, these are not equivalent because an unstable internal equilibrium may exist and the condition for successful invasion of the modifier is more restrictive than that for eventual fixation from already high frequency. However, successful invasion implies global fixation, i.e., fixation from any initial condition. Modifiers of large effect can become fixed, and also invade, in a wider parameter range than modifiers of small effect. We also study modifiers with a direct, frequency-independent deleterious fitness effect. We show that they can invade if they induce a sufficiently high level of dominance and if disruptive selection on the ecological trait is strong enough. For deleterious modifiers, successful invasion no longer implies global fixation because they can become stuck at an intermediate frequency due to a stable internal equilibrium. Although the conditions for invasion and for fixation if sufficiently frequent are independent of the linkage relation between the two loci, the rate of spread depends strongly on it. The present study provides further support to the view that evolution of dominance may be an efficient mechanism to remove unfit heterozygotes that are maintained by balancing selection. It also demonstrates that an invasion analysis of mutants of very small effect is insufficient to obtain a full understanding of the evolutionary dynamics under frequency-dependent selection.
Resumo:
We study the evolution of higher levels of dominance as a response to negative frequency-dependent selection. In contrast to previous studies, we focus on the effect of assortative mating on the evolution of dominance under frequency-dependent intraspecific competition. We analyze a two-locus two-allele model, in which the primary locus has a major effect on a quantitative trait that is under a mixture of frequency-independent stabilizing selection, density-dependent selection, and frequency-dependent selection caused by intraspecific competition for a continuum of resources. The second (modifier) locus determines the degree of dominance at the trait level. Additionally, the population mates assortatively with respect to similarities in the ecological trait. Our analysis shows that the parameter region in which dominance can be established decreases if small levels of assortment are introduced. In addition, the degree of dominance that can be established also decreases. In contrast, if assortment is intermediate, sexual selection for extreme types can be established, which leads to evolution of higher levels of dominance than under random mating. For modifiers with large effects, intermediate levels of assortative mating are most favorable for the evolution of dominance. For large modifiers, the speed of fixation can even be higher for intermediate levels of assortative mating than for random mating.
Resumo:
When subjects are required to generate a random sequence of numbers they typically produce too many forward and backward 'counts' (e.g. 5-6, 4-3). This counting bias is interpreted as the consequence of an interference by overlearned tendencies to arrange numbers according to their natural order. Inhibition of such well-learned routines is known to rely on frontal lobe functioning. We examined differential effects of slow (1 Hz) and fast (10 Hz) repetitive transcranial magnetic stimulation (rTMS) over the left or right dorsolateral prefrontal cortex (DLPFC) on random number generation (RNG) performance. Eighteen healthy men performed an RNG task. Those subjects stimulated over the left DLPFC showed a frequency-dependent rTMS effect: counting bias was significantly reduced after the 1 Hz stimulation compared with baseline, but significantly exaggerated after the 10 Hz stimulation compared with 1 Hz stimulation. In contrast, the sequences of the subjects stimulated over the right DLPFC showed the well-known excess of counting in all conditions (i.e. baseline, 1 Hz and 10 Hz). These findings confirm the functional importance of specifically the left DLPFC in sequential response production and show, for the first time, that rTMS affects cognitive processing in a frequency-dependent manner.
Resumo:
Variability in fire regime at the continental scale has primarily been attributed to climate change, often overshadowing the widely potential impact of human activities. However, human ignition modifies the rhythm of fire episodes occurrence (fire frequency), whereas land use alters vegetation composition and fuel load, and thus the amount of biomass burned. It is unclear, however, whether and how humans have exercised a significant influence over fire regimes at continental and millennial scales. Based on sedimentary charcoal records, we use new alternative estimate of fire frequency and biomass burned for the last 16000 years (here after 16 ky) that we evaluate with outputs from climate, vegetation, land use and population models. We find that pronounced regional-scale land use changes in southern Europe at the beginning of the Neolithic (8–6 ky), during the Bronze Age (5–4 ky) and the medieval period (1 ky) caused a doubling of fire frequency compared to the Holocene average (the last 11.5 ky). Despite anthropogenic influences, southern European biomass burned decreased from 7 ky, which is in line both with changes in orbital parameters leading climate cooling and also reductions in biomass availability because of land use. Our study underscores the role of elevation-dependent parameters, and particularly biomass and land management, as major drivers of fire regime variability. Results attest a determinant anthropogenic driving-force on fire regime and a decrease in fire-carbon emissions since 7 ky in Southern Europe.
Resumo:
Colour polymorphisms have fascinated evolutionary ecologists for a long time. Yet, knowledge on the mechanisms that allow their persistence is restricted to a handful of well-studied cases. We studied two species of Lake Victoria cichlid fish, Neochromis omnicaeruleus and Neochromis greenwoodi, exhibiting very similar sex-linked colour polymorphisms. The ecology and behaviour of one of these species is well studied, with colour-based mating and aggression preferences. Here, we ask whether the selection potentially resulting from female and male mating preferences and aggression biases reduces gene flow between the colour morphs and permits differentiation in traits other than colour. Over the past 14 years, the frequencies of colour morphs have somewhat oscillated, but there is no evidence for directional change, suggesting the colour polymorphism is persistent on an ecological timescale. We find limited evidence of ecomorphological differentiation between sympatric ancestral (plain) and derived (blotched) colour morphs. We also find significantly nonrandom genotypic assignment and an excess of linkage disequilibrium in the plain morph, which together with previous information on mating preferences suggests nonrandom mating between colour morphs. This, together with negative frequency-dependent sexual selection, found in previous studies, may facilitate maintenance of these polymorphisms in sympatry
Resumo:
The maintenance of colour polymorphisms within populations has been a long-standing interest in evolutionary ecology. African cichlid fish contain some of the most striking known cases of this phenomenon. Intrasexual selection can be negative frequency dependent when males bias aggression towards phenotypically similar rivals, stabilizing male colour polymorphisms. We propose that where females are territorial and competitive, aggression biases in females may also promote coexistence of female morphs. We studied a polymorphic population of the cichlid fish Neochromis omnicaeruleus from Lake Victoria, in which three distinct female colour morphs coexist: one plain brown and two blotched morphs. Using simulated intruder choice tests in the laboratory, we show that wild-caught females of each morph bias aggression towards females of their own morph, suggesting that females of all three morphs may have an advantage when their morph is locally the least abundant. This mechanism may contribute to the establishment and stabilization of colour polymorphisms. Next, by crossing the morphs, we generated sisters belonging to different colour morphs. We find no sign of aggression bias in these sisters, making pleiotropy unlikely to explain the association between colour and aggression bias in wild fish, which is maintained in the face of gene flow. We conclude that female-female aggression may be one important force for stabilizing colour polymorphism in cichlid fish.
Resumo:
Female mating preference based on male nuptial coloration has been suggested to be an important source of diversifying selection in the radiation of Lake Victoria cichlid fish. Initial variation in female preference is a prerequisite for diversifying selection; however, it is rarely studied in natural populations. In clear water areas of Lake Victoria, the sibling species Pundamilia pundamilia with blue males and Pundamilia nyererei with red males coexist, intermediate phenotypes are rare, and most females have species-assortative mating preferences. Here, we study a population of Pundamilia that inhabits turbid water where male coloration is variable from reddish to blue with most males intermediate. We investigated male phenotype distribution and female mating preferences. Male phenotype was unimodally distributed with a mode on intermediate color in 1 year and more blue-shifted in 2 other years. In mate choice experiments with females of the turbid water population and males from a clearer water population, we found females with a significant and consistent preference for P. pundamilia (blue) males, females with such preferences for P. nyererei (red) males, and many females without a preference. Hence, female mating preferences in this population could cause disruptive selection on male coloration that is probably constrained by the low signal transduction of the turbid water environment. We suggest that if environmental signal transduction was improved and the preference/color polymorphism was stabilized by negative frequency-dependent selection, divergent sexual selection might separate the 2 morphs into reproductively isolated species resembling the clear water species P. pundamilia and P. nyererei.
Resumo:
In patients with drug-resistant hypertension, chronic electric stimulation of the carotid baroreflex is an investigational therapy for blood pressure reduction. We hypothesized that changes in cardiac autonomic regulation can be demonstrated in response to chronic baroreceptor stimulation, and we analyzed the correlation with blood pressure changes. Twenty-one patients with drug-resistant hypertension were prospectively included in a substudy of the Device Based Therapy in Hypertension Trial. Heart rate variability and heart rate turbulence were analyzed using 24-hour ECG. Recordings were obtained 1 month after device implantation with the stimulator off and after 3 months of chronic electric stimulation (stimulator on). Chronic baroreceptor stimulation decreased office blood pressure from 185+/-31/109+/-24 mm Hg to 154+/-23/95+/-16 mm Hg (P<0.0001/P=0.002). Mean heart rate decreased from 81+/-11 to 76+/-10 beats per minute(-1) (P=0.001). Heart rate variability frequency-domain parameters assessed using fast Fourier transformation (FFT; ratio of low frequency:high frequency: 2.78 versus 2.24 for off versus on; P<0.001) were significantly changed during stimulation of the carotid baroreceptor, and heart rate turbulence onset was significantly decreased (turbulence onset: -0.002 versus -0.015 for off versus on; P=0.004). In conclusion, chronic baroreceptor stimulation causes sustained changes in heart rate variability and heart rate turbulence that are consistent with inhibition of sympathetic activity and increase of parasympathetic activity in patients with drug-resistant systemic hypertension; these changes correlate with blood pressure reduction. Whether the autonomic modulation has favorable cardiovascular effects beyond blood pressure control should be investigated in further studies.
Resumo:
The origin and maintenance of phenotypic polymorphisms is a classical problem in evolutionary ecology. Aggressive male-male competition can be a source of negative frequency-dependent selection stabilizing phenotypic polymorphisms when aggression is biased toward the own morph. We studied experimental assemblages of red and blue color morphs of the Lake Victoria cichlid fish Pundamilia. Aggression was investigated in mixed-color and single-color assemblages. We found that aggression was indeed biased toward males of the same color, which could in theory reduce aggression levels in mixed-color assemblages and promote coexistence. However, previous studies showed high aggression levels in red and dominance of red over blue males in dyadic interactions, which could hinder coexistence. We found that coexistence in mixed-color assemblages reduced the level of aggression in red males but not in blue males. Red and blue males were equally dominant in mixed-color assemblages, suggesting that predictions derived from dyadic interactions may not be valid for an assemblage situation. The results are consistent with field data: the geographic range of red is nested within that of blue, suggesting that red cannot displace blue. Our study suggests that male-male competition may be a significant force for maintaining phenotypic diversity.
Resumo:
Both inter- and intrasexual selection have been implicated in the origin and maintenance of species-rich taxa with diverse sexual traits. Simultaneous disruptive selection by female mate choice and male-male competition can, in theory, lead to speciation without geographical isolation if both act on the same male trait. Female mate choice can generate discontinuities in gene flow, while male-male competition can generate negative frequency-dependent selection stabilizing the male trait polymorphism. Speciation may be facilitated when mating preference and/or aggression bias are physically linked to the trait they operate on. We tested for genetic associations among female mating preference, male aggression bias and male coloration in the Lake Victoria cichlid Pundamilia. We crossed females from a phenotypically variable population with males from both extreme ends of the phenotype distribution in the same population (blue or red). Male offspring of a red sire were significantly redder than males of a blue sire, indicating that intra-population variation in male coloration is heritable. We tested mating preferences of female offspring and aggression biases of male offspring using binary choice tests. There was no evidence for associations at the family level between female mating preferences and coloration of sires, but dam identity had a significant effect on female mate preference. Sons of the red sire directed significantly more aggression to red than blue males, whereas sons of the blue sire did not show any bias. There was a positive correlation among individuals between male aggression bias and body coloration, possibly due to pleiotropy or physical linkage, which could facilitate the maintenance of color polymorphism.
Resumo:
We present coherent control of a THz meta-material. Specifically, we show in detail the time and frequency dependent response of a single and a double split ring resonator upon excitation with a shaped THz field. Through far- and near-field measurements, we confirm the coherence transfer from the tailored THz field to the system and back to the radiated field and we demonstrate selective excitation of a designated system resonance with a suitably shaped THz pulse.
Resumo:
The deceptive Iris lutescens (Iridaceae) shows a heritable and striking flower colour polymorphism, with both yellow- and purple-flowered individuals growing sympatrically. Deceptive species with flower colour polymorphism are mainly described in the family Orchidaceae and rarely found in other families. To explain the maintenance of flower colour polymorphism in I.lutescens, we investigated female reproductive success in natural populations of southern France, at both population and local scales (within populations). Female reproductive success was positively correlated with yellow morph frequency, at both the population scale and the local scale. Therefore, we failed to observe negative frequency-dependent selection (NFDS), a mechanism commonly invoked to explain flower colour polymorphism in deceptive plant species. Flower size and local flower density could also affect female reproductive success in natural populations. Pollinator behaviour could explain the positive effect of the yellow morph, and our results suggest that flower colour polymorphism might not persist in I.lutescens, but alternative explanations not linked to pollinator behaviour are discussed. In particular, NFDS, although an appealingly simple explanation previously demonstrated in orchids, may not always contribute to maintaining flower colour polymorphism, even in deceptive species.