17 resultados para embryo suspensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrates, efficient gas exchange depends primarily on establishment of a thin blood-gas barrier (BGB). The primordial air conduits of the developing avian lung are lined with a cuboidal epithelium that is ultimately converted to a squamous one that participates in the formation of the BGB. In the early stages, cells form intraluminal protrusions (aposomes) then transcellular double membranes separating the aposome from the basal part of the cell establish, unzip and sever the aposome from the cell. Additionally, better endowed cells squeeze out adjacent cells or such cells constrict spontaneously thus extruding the squeezed out aposome. Formation of vesicles or vacuoles below the aposome and fusion of such cavities with their neighboring cognates results in severing of the aposome. Augmentation of cavities and their subsequent fusion with the apical plasma membranes results in formation of numerous microfolds separating concavities on the apical part of the cell. Abscission of such microfolds results in a smooth squamous epithelium just before hatching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reorientation of the two vertically oriented palatal shelves into a horizontal position above the tongue, and second, fusion of the two shelves at the midline. Genetic evidence in humans and mice indicates the involvement of matrix metalloproteinases (MMPs). As MMP expression patterns might differ from sites of activity, we used a recently developed highly sensitive in situ zymography technique to map gelatinolytic MMP activity in the developing mouse palate. At embryonic day 14.5 (E14.5), we detected strong gelatinolytic activity around the lateral epithelial folds of the nasopharyngeal cavity, which is generated as a consequence of palatal shelf elevation. Activity was concentrated in the basement membrane of the epithelial fold but extended into the adjacent mesenchyme, and increased in intensity with lateral outgrowth of the cavity at E15.5. Gelatinolytic activity at this site was not the consequence of epithelial fold formation, as it was also observed in Bmp7-deficient embryos where shelf elevation is delayed. In this case, gelatinolytic activity appeared in vertical shelves at the exact position where the epithelial fold will form during elevation. Mmp2 and Mmp14 (MT1-MMP), but not Mmp9 and Mmp13, mRNAs were expressed in the mesenchyme around the epithelial folds of the elevated palatal shelves; this was confirmed by immunostaining for MMP-2 and MT1-MMP. Weak gelatinolytic activity was also found at the midline of E14.5 palatal shelves, which increased during fusion at E15.5. Whereas MMPs have been implicated in palatal fusion before, this is the first report showing that gelatinases might contribute to tissue remodeling during early stages of palatal shelf elevation and formation of the nasopharynx.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic evidence indicates that the major gelatinases MMP-2 and MMP-9 are involved in mammalian craniofacial development. Since these matrix metalloproteinases are secreted as proenzymes that require activation, their tissue distribution does not necessarily reflect the sites of enzymatic activity. Information regarding the spatial and temporal expression of gelatinolytic activity in the head of the mammalian embryo is sparse. Sensitive in situ zymography with dye-quenched gelatin (DQ-gelatin) has been introduced recently; gelatinolytic activity results in a local increase in fluorescence. Using frontal sections of wild-type mouse embryo heads from embryonic day 14.5-15.5, we optimized and validated a simple double-labeling in situ technique for combining DQ-gelatin zymography with immunofluorescence staining. MMP inhibitors were tested to confirm the specificity of the reaction in situ, and results were compared to standard SDS-gel zymography of tissue extracts. Double-labeling was used to show the spatial relationship in situ between gelatinolytic activity and immunostaining for gelatinases MMP-2 and MMP-9, collagenase 3 (MMP-13) and MT1-MMP (MMP-14), a major activator of pro-gelatinases. Strong gelatinolytic activity, which partially overlapped with MMP proteins, was confirmed for Meckel's cartilage and developing mandibular bone. In addition, we combined in situ zymography with immunostaining for extracellular matrix proteins that are potential gelatinase substrates. Interestingly, gelatinolytic activity colocalized precisely with laminin-positive basement membranes at specific sites around growing epithelia in the developing mouse head, such as the ducts of salivary glands or the epithelial fold between tongue and lower jaw region. Thus, this sensitive method allows to associate, with high spatial resolution, gelatinolytic activity with epithelial morphogenesis in the embryo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tall epithelium of the developing chick embryo lung is converted to a squamous one, which participates in formation of the thin blood-gas barrier. We show that this conversion occurred through processes resembling exocrine secretion. Initially, cells formed intraluminal protrusions (aposomes), and then transcellular double membranes were established. Gaps between the membranes opened, thus, severing the aposome from the cell. Alternatively, aposomes were squeezed out by adjacent cells or were spontaneously constricted and extruded. As a third mechanism, formation and fusion of severed vesicles or vacuoles below the aposome and their fusion with the apicolateral plasma membrane resulted in severing of the aposome. The atria started to form by progressive epithelial attenuation and subsequent invasion of the surrounding mesenchyme at regions delineated by subepithelial alpha-smooth muscle actin-positive cells. Further epithelial attenuation was achieved by vacuolation; rupture of such vacuoles with resultant numerous microfolds and microvilli, which were abscised to accomplish a smooth squamous epithelium just before hatching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroligins (NLs) constitute a family of cell-surface proteins that interact with neurexins (beta-Nxs), another class of neuronal cell-surface proteins, one of each class functioning together in synapse formation. The localization of the various neurexins and neuroligins, however, has not yet been clarified in chicken. Therefore, we studied the expression patterns of neurexin-1 (Nx-1) and neuroligin-1 and -3 during embryonic development of the chick retina and brain by reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization (ISH). While neurexin-1 increased continuously in both brain and retina, the expression of both neuroligins was more variable. As shown by ISH, Nx-1 is expressed in the inner half retina along with differentiation of ganglion and amacrine cells. Transcripts of NL-1 were detected as early as day 4 and increased with the maturation of the different brain regions. In different brain regions, NL-1 showed a different time regulation. Remarkably, neuroligin-3 was entirely absent in retina. This study indicates that synaptogenetic processes in brain and retina use different molecular machineries, whereby the neuroligins might represent the more distinctly regulated part of the neurexin-neuroligin complexes. Noticeably, NL-3 does not seem to be involved in the making of retinal synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiponectin (Acrp30) is an adipose tissue-derived protein whose serum concentrations, in contrast to leptin, are reported to be negatively correlated to body mass. In spite of the comparatively high circulating adiponectin concentrations, this protein has not been studied in the context of assisted reproduction to date. The aim of this preliminary project was thus to examine the potential of adiponectin to serve as a marker for fertility. We compared adiponectin levels in serum before and after controlled ovarian hyperstimulation, as well as in follicular fluid (FF), between two groups: those with successful outcome (clinical pregnancies) and those with implantation failure. In the former, adiponectin concentrations were higher than in the negative outcome group; this difference was statistically significant (p < 0.05) in serum on the day of oocyte pick-up (OPU) as well as two or three days before OPU, but not in FF or in serum at the beginning of the stimulation phase. This finding adds a new perspective to the suggested but still controversial reduction in FF leptin concentrations in the positive outcome group, and may become a useful tool for early prediction of success of in vitro fertilization treatment for a given patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, the contribution of the major angiogenic mechanisms, sprouting and intussusception, to vascular development in the avian lung has been demonstrated. Sprouting guides the emerging vessels to form the primordial vascular plexus, which successively surrounds and encloses the parabronchi. Intussusceptive angiogenesis has an upsurge from embryonic day 15 (E15) and contributes to the remarkably rapid expansion of the capillary plexus. Increased blood flow stimulates formation of pillars (the archetype of intussusception) in rows, their subsequent fusion and concomitant delineation of slender, solitary vascular entities from the disorganized meshwork, thus crafting the organ-specific angioarchitecture. Morphometric investigations revealed that sprouting is preponderant in the early period of development with a peak at E15 but is subsequently supplanted by intussusceptive angiogenesis by the time of hatching. Quantitative RT-PCR revealed that moderate levels of basic FGF (bFGF) and VEGF-A were maintained during the sprouting phase while PDGF-B remained minimal. All three factors were elevated during the intussusceptive phase. Immunohistoreactivity for VEGF was mainly in the epithelial cells, whereas bFGF was confined to the stromal compartment. Temporospatial interplay between sprouting and intussusceptive angiogenesis fabricates a unique vascular angioarchitecture that contributes to the establishment of a highly efficient gas exchange system characteristic of the avian lung.