18 resultados para electron beam evaporation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One limitation to the widespread implementation of Monte Carlo (MC) patient dose-calculation algorithms for radiotherapy is the lack of a general and accurate source model of the accelerator radiation source. Our aim in this work is to investigate the sensitivity of the photon-beam subsource distributions in a MC source model (with target, primary collimator, and flattening filter photon subsources and an electron subsource) for 6- and 18-MV photon beams when the energy and radial distributions of initial electrons striking a linac target change. For this purpose, phase-space data (PSD) was calculated for various mean electron energies striking the target, various normally distributed electron energy spread, and various normally distributed electron radial intensity distributions. All PSD was analyzed in terms of energy, fluence, and energy fluence distributions, which were compared between the different parameter sets. The energy spread was found to have a negligible influence on the subsource distributions. The mean energy and radial intensity significantly changed the target subsource distribution shapes and intensities. For the primary collimator and flattening filter subsources, the distribution shapes of the fluence and energy fluence changed little for different mean electron energies striking the target, however, their relative intensity compared with the target subsource change, which can be accounted for by a scaling factor. This study indicates that adjustments to MC source models can likely be limited to adjusting the target subsource in conjunction with scaling the relative intensity and energy spectrum of the primary collimator, flattening filter, and electron subsources when the energy and radial distributions of the initial electron-beam change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). METHODS This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. RESULTS For 15 × 34, 5 × 5, and 2 × 2 cm(2) fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two-dimensional dose comparisons, the differences between calculations and measurements are generally within 2% of the maximal dose value or 2 mm DTA. CONCLUSIONS The results of the dose comparisons suggest that the developed beam model is suitable to accurately reconstruct photon MLC shaped electron beams for a Clinac 23EX and a TrueBeam linac. Hence, in future work the beam model will be utilized to investigate the possibilities of MERT using the photon MLC to shape electron beams.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To investigate the dosimetric properties of an electronic portal imaging device (EPID) for electron beam detection and to evaluate its potential for quality assurance (QA) of modulated electron radiotherapy (MERT). Methods: A commercially available EPID was used to detect electron beams shaped by a photon multileaf collimator (MLC) at a source-surface distance of 70 cm. The fundamental dosimetric properties such as reproducibility, dose linearity, field size response, energy response, and saturation were investigated for electron beams. A new method to acquire the flood-field for the EPID calibration was tested. For validation purpose, profiles of open fields and various MLC fields (square and irregular) were measured with a diode in water and compared to the EPID measurements. Finally, in order to use the EPID for QA of MERT delivery, a method was developed to reconstruct EPID two-dimensional (2D) dose distributions in a water-equivalent depth of 1.5 cm. Comparisons were performed with film measurement for static and dynamic monoenergy fields as well as for multienergy fields composed by several segments of different electron energies. Results: The advantageous EPID dosimetric properties already known for photons as reproducibility, linearity with dose, and dose rate were found to be identical for electron detection. The flood-field calibration method was proven to be effective and the EPID was capable to accurately reproduce the dose measured in water at 1.0 cm depth for 6 MeV, 1.3 cm for 9 MeV, and 1.5 cm for 12, 15, and 18 MeV. The deviations between the output factors measured with EPID and in water at these depths were within ±1.2% for all the energies with a mean deviation of 0.1%. The average gamma pass rate (criteria: 1.5%, 1.5 mm) for profile comparison between EPID and measurements in water was better than 99% for all the energies considered in this study. When comparing the reconstructed EPID 2D dose distributions at 1.5 cm depth to film measurements, the gamma pass rate (criteria: 2%, 2 mm) was better than 97% for all the tested cases. Conclusions: This study demonstrates the high potential of the EPID for electron dosimetry, and in particular, confirms the possibility to use it as an efficient verification tool for MERT delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High brightness electron sources are of great importance for the operation of the hard X-ray free electron lasers. Field emission cathodes based on the double-gate metallic field emitter arrays (FEAs) can potentially offer higher brightness than the currently used ones. We report on the successful application of electron beam lithography for fabrication of the large-scale single-gate as well as double-gate FEAs. We demonstrate operational high-density single-gate FEAs with sub-micron pitch and total number of tips up to 106 as well as large-scale double-gate FEAs with large collimation gate apertures. The details of design, fabrication procedure and successful measurements of the emission current from the single- and double-gate cathodes are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). METHODS As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. RESULTS The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V95% increased from 90% to 96% and V107% decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. CONCLUSIONS MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE A beamlet based direct aperture optimization (DAO) for modulated electron radiotherapy (MERT) using photon multileaf collimator (pMLC) shaped electron fields is developed and investigated. METHODS The Swiss Monte Carlo Plan (SMCP) allows the calculation of dose distributions for pMLC shaped electron beams. SMCP is interfaced with the Eclipse TPS (Varian Medical Systems, Palo Alto, CA) which can thus be included into the inverse treatment planning process for MERT. This process starts with the import of a CT-scan into Eclipse, the contouring of the target and the organs at risk (OARs), and the choice of the initial electron beam directions. For each electron beam, the number of apertures, their energy, and initial shape are defined. Furthermore, the DAO requires dose-volume constraints for the structures contoured. In order to carry out the DAO efficiently, the initial electron beams are divided into a grid of beamlets. For each of those, the dose distribution is precalculated using a modified electron beam model, resulting in a dose list for each beamlet and energy. Then the DAO is carried out, leading to a set of optimal apertures and corresponding weights. These optimal apertures are now converted into pMLC shaped segments and the dose calculation for each segment is performed. For these dose distributions, a weight optimization process is launched in order to minimize the differences between the dose distribution using the optimal apertures and the pMLC segments. Finally, a deliverable dose distribution for the MERT plan is obtained and loaded back into Eclipse for evaluation. For an idealized water phantom geometry, a MERT treatment plan is created and compared to the plan obtained using a previously developed forward planning strategy. Further, MERT treatment plans for three clinical situations (breast, chest wall, and parotid metastasis of a squamous cell skin carcinoma) are created using the developed inverse planning strategy. The MERT plans are compared to clinical standard treatment plans using photon beams and the differences between the optimal and the deliverable dose distributions are determined. RESULTS For the idealized water phantom geometry, the inversely optimized MERT plan is able to obtain the same PTV coverage, but with an improved OAR sparing compared to the forwardly optimized plan. Regarding the right-sided breast case, the MERT plan is able to reduce the lung volume receiving more than 30% of the prescribed dose and the mean lung dose compared to the standard plan. However, the standard plan leads to a better homogeneity within the CTV. The results for the left-sided thorax wall are similar but also the dose to the heart is reduced comparing MERT to the standard treatment plan. For the parotid case, MERT leads to lower doses for almost all OARs but to a less homogeneous dose distribution for the PTV when compared to a standard plan. For all cases, the weight optimization successfully minimized the differences between the optimal and the deliverable dose distribution. CONCLUSIONS A beamlet based DAO using multiple beam angles is implemented and successfully tested for an idealized water phantom geometry and clinical situations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92 ± 0.55 expected background events. In the PMNS mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm232 and a CP violating phase δCP. In this neutrino oscillation scenario, assuming |Δm232|=2.4×10−3 eV2, sin2θ23=0.5, δCP=0, and Δm232>0 (Δm232<0), a best-fit value of sin22θ13 = 0.140+0.038−0.032 (0.170+0.045−0.037) is obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The T2K Collaboration reports evidence for electron neutrino appearance at the atmospheric mass splitting, vertical bar Delta m(32)(2)vertical bar approximate to 2.4 X 10(-3) eV(2). An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a peak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beam's origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3 +/- 0.4(syst) events is expected. The background-only hypothesis is rejected with a p value of 0.0009 (3.1 sigma), and a fit assuming nu(mu) -> nu(e) oscillations with sin (2)2 theta(23) = 1, delta(CP) = 0 and vertical bar Delta m(32)(2)vertical bar = 2.4 X 10(-3) eV(2) yields sin (2)2 theta(13) = 0.088(-0.039)(+0.049)(stat + syst).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01±0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68±0.30 and 1.10±0.14 , respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ArgoNeuT liquid argon time projection chamber has collected thousands of neutrino and anti-neutrino events during an extended run period in the NuMI beam-line at Fermilab. This paper focuses on the main aspects of the detector layout and related technical features, including the cryogenic equipment, time projection chamber, read-out electronics, and off-line data treatment. The detector commissioning phase, physics run, and first neutrino event displays are also reported. The characterization of the main working parameters of the detector during data-taking, the ionization electron drift velocity and lifetime in liquid argon, as obtained from through-going muon data complete the present report.