75 resultados para dominant inheritance
Resumo:
Context and Objective: Most cases of goitrous congenital hypothyroidism (CH) from thyroid dyshormonogenesis 1) follow a recessive mode of inheritance and 2) are due to mutations in the thyroid peroxidase gene (TPO). We report the genetic mechanism underlying the apparently dominant inheritance of goitrous CH in a nonconsanguineous family of French Canadian origin. Design, Setting, and Participants: Two brothers identified by newborn TSH screening had severe hypothyroidism and a goiter with increased (99m)Tc uptake. The mother was euthyroid, but the father and two paternal uncles had also been diagnosed with goitrous CH. After having excluded PAX8 gene mutations, we hypothesized that the underlying defect could be TPO mutations. Results: Both compound heterozygous siblings had inherited a mutant TPO allele carried by their mother (c.1496delC; p.Pro499Argfs2X), and from their father, one brother had inherited a missense mutation (c.1978C-->G; p.Gln660Glu) and the other an insertion (c.1955insT; p.Phe653Valfs15X). The thyroid gland of one uncle who is a compound heterozygote for TPO mutations (p.Phe653Valfs15X/p.Gln660Glu) was removed because of concurrent multiple endocrine neoplasia type 2A. Immunohistochemistry revealed normal TPO staining, implying that Gln660Glu TPO is expressed properly. Modeling of this mutant in silico suggests that its three-dimensional structure is conserved, whereas the electrostatic binding energy between the Gln660Glu TPO and its heme group becomes repulsive. Conclusion: We report a pedigree presenting with pseudodominant goitrous CH due to segregation of three different TPO mutations. Although goitrous CH generally follows a recessive mode of inheritance, the high frequency of TPO mutations carriers may lead to pseudodominant inheritance.
Resumo:
OBJECTIVE To study clinical, morphological and molecular characteristics in a Swiss family with autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI). PARTICIPANTS AND METHODS A 15-month-old girl presenting with symptoms of polydipsia and polyuria was investigated by water deprivation test. Evaluation of the family revealed three further family members with symptomatic vasopressin-deficient diabetes insipidus. T1-weighted magnetic resonance images of the posterior pituitary were taken in two affected adult family members and molecular genetic analysis was performed in all affected individuals. RESULTS The water deprivation test in the 15-month-old child confirmed the diagnosis of vasopressin-deficient diabetes insipidus and the pedigree was consistent with autosomal dominant inheritance. The characteristic bright spot of the normal vasopressin-containing neurophypophysis was absent in both adults with adFNDI. Direct sequence analysis revealed a new deletion (177-179DeltaCGC) in exon 2 of the AVP-NP II gene in all affected individuals. At the amino acid level, this deletion eliminates cysteine 59 (C59Delta) and substitutes alanine 60 by tryptophan (A60W) in the AVP-NP II precursor; interestingly, the remainder of the reading frame remains unchanged. According to the three-dimensional structure of neurophysin, C59 is involved in a disulphide bond with C65. CONCLUSIONS Deletion of C59 and substitution of A60W in the AVP-NP II precursor is predicted to disrupt one of the seven disulphide bridges required for correct folding of the neurophysin moiety and thus disturb the function of neurophysin as the vasopressin transport protein. These data are in line with the clinical and morphological findings in the reported family with adFNDI.
Resumo:
PURPOSE: Identification of a novel rhodopsin mutation in a family with retinitis pigmentosa and comparison of the clinical phenotype to a known mutation at the same amino acid position. METHODS: Screening for mutations in rhodopsin was performed in 78 patients with retinitis pigmentosa. All exons and flanking intronic regions were amplified by PCR, sequenced, and compared to the reference sequence derived from the National Center for Biotechnology Information (NCBI, Bethesda, MD) database. Patients were characterized clinically according to the results of best corrected visual acuity testing (BCVA), slit lamp examination (SLE), funduscopy, Goldmann perimetry (GP), dark adaptometry (DA), and electroretinography (ERG). Structural analyses of the rhodopsin protein were performed with the Swiss-Pdb Viewer program available on-line (http://www.expasy.org.spdvbv/ provided in the public domain by Swiss Institute of Bioinformatics, Geneva, Switzerland). RESULTS: A novel rhodopsin mutation (Gly90Val) was identified in a Swiss family of three generations. The pedigree indicated autosomal dominant inheritance. No additional mutation was found in this family in other autosomal dominant genes. The BCVA of affected family members ranged from 20/25 to 20/20. Fundus examination showed fine pigment mottling in patients of the third generation and well-defined bone spicules in patients of the second generation. GP showed concentric constriction. DA demonstrated monophasic cone adaptation only. ERG revealed severely reduced rod and cone signals. The clinical picture is compatible with retinitis pigmentosa. A previously reported amino acid substitution at the same position in rhodopsin leads to a phenotype resembling night blindness in mutation carriers, whereas patients reported in the current study showed the classic retinitis pigmentosa phenotype. The effect of different amino acid substitutions on the three-dimensional structure of rhodopsin was analyzed by homology modeling. Distinct distortions of position 90 (shifts in amino acids 112 and 113) and additional hydrogen bonds were found. CONCLUSIONS: Different amino acid substitutions at position 90 of rhodopsin can lead to night blindness or retinitis pigmentosa. The data suggest that the property of the substituted amino acid distinguishes between the phenotypes.
Resumo:
Four male Pomeranians that showed alopecia with an age of onset between five months and eight years were investigated.The aim of the investigation was to clarify whether the affected dogs had alopecia X and whether their symptoms might be due to a hereditary defect.The four affected dogs showed hairless patches at the root of the tail, at the back, at the limbs from the thigh to the tarsus and at the abdomen. Within the hairless patches some islets with sparse hair were present. In hairless patches the skin was dark pigmented. Besides the alopecia and hyperpigmentation no other symptoms were found according to anamnestic and clinical examination. History, clinical examinations, laboratory diagnostics, and histopathology of skin biopsies allowed the diagnosis of alopecia X in three affected male dogs.The last one of the affected dogs additionally had slightly reduced thyroid hormone levels. Based on identical symptoms and the close relatedness of all four animals, it was assumed that the fourth affected dog also had alopecia X.The available data possibly indicate a monogenic autosomal dominant inheritance, however a recessive inheritance can not be excluded at this time.
Resumo:
PURPOSE: The goal of this study was to identify mutations in X-chromosomal genes associated with retinitis pigmentosa (RP) in patients from Germany, The Netherlands, Denmark, and Switzerland. METHODS: In addition to all coding exons of RP2, exons 1 through 15, 9a, ORF15, 15a and 15b of RPGR were screened for mutations. PCR products were amplified from genomic DNA extracted from blood samples and analyzed by direct sequencing. In one family with apparently dominant inheritance of RP, linkage analysis identified an interval on the X chromosome containing RPGR, and mutation screening revealed a pathogenic variant in this gene. Patients of this family were examined clinically and by X-inactivation studies. RESULTS: This study included 141 RP families with possible X-chromosomal inheritance. In total, we identified 46 families with pathogenic sequence alterations in RPGR and RP2, of which 17 mutations have not been described previously. Two of the novel mutations represent the most 3'-terminal pathogenic sequence variants in RPGR and RP2 reported to date. In exon ORF15 of RPGR, we found eight novel and 14 known mutations. All lead to a disruption of open reading frame. Of the families with suggested X-chromosomal inheritance, 35% showed mutations in ORF15. In addition, we found five novel mutations in other exons of RPGR and four in RP2. Deletions in ORF15 of RPGR were identified in three families in which female carriers showed variable manifestation of the phenotype. Furthermore, an ORF15 mutation was found in an RP patient who additionally carries a 6.4 kbp deletion downstream of the coding region of exon ORF15. We did not identify mutations in 39 sporadic male cases from Switzerland. CONCLUSIONS: RPGR mutations were confirmed to be the most frequent cause of RP in families with an X-chromosomal inheritance pattern. We propose a screening strategy to provide molecular diagnostics in these families.
Resumo:
The white belt pattern of Brown Swiss cattle is characterized by a lack of melanocytes in a stretch of skin around the midsection. This pattern is of variable width and sometimes the belt does not fully circle the body. To identify the gene responsible for this colour variation, we performed linkage mapping of the belted locus using six segregating half-sib families including 104 informative meioses for the belted character. The pedigree confirmed a monogenic autosomal dominant inheritance of the belted phenotype in Brown Swiss cattle. We performed a genome scan using 186 microsatellite markers in a subset of 88 animals of the six families. Linkage with the belt phenotype was detected at the telomeric region of BTA3. Fine-mapping and haplotype analysis using 19 additional markers in this region refined the critical region of the belted locus to a 922-kb interval on BTA3. As the corresponding human and mouse chromosome segments contain no obvious candidate gene for this coat colour trait, the mutation causing the belt pattern in the Brown Swiss cattle might help to identify an unknown gene influencing skin pigmentation.
Resumo:
Ectodermal dysplasias (EDs) are a large and heterogeneous group of hereditary disorders characterized by abnormalities in structures of ectodermal origin. Incontinentia pigmenti (IP) is an ED characterized by skin lesions evolving over time, as well as dental, nail, and ocular abnormalities. Due to X-linked dominant inheritance IP symptoms can only be seen in female individuals while affected males die during development in utero. We observed a family of horses, in which several mares developed signs of a skin disorder reminiscent of human IP. Cutaneous manifestations in affected horses included the development of pruritic, exudative lesions soon after birth. These developed into wart-like lesions and areas of alopecia with occasional wooly hair re-growth. Affected horses also had streaks of darker and lighter coat coloration from birth. The observation that only females were affected together with a high number of spontaneous abortions suggested an X-linked dominant mechanism of transmission. Using next generation sequencing we sequenced the whole genome of one affected mare. We analyzed the sequence data for non-synonymous variants in candidate genes and found a heterozygous nonsense variant in the X-chromosomal IKBKG gene (c.184C>T; p.Arg62*). Mutations in IKBKG were previously reported to cause IP in humans and the homologous p.Arg62* variant has already been observed in a human IP patient. The comparative data thus strongly suggest that this is also the causative variant for the observed IP in horses. To our knowledge this is the first large animal model for IP.
Resumo:
Background Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12 % of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive. The normal phenotype of the sire suggested a dominant inheritance with incomplete penetrance or a mosaic mutation. Results Three malformed calves were examined by necropsy, histopathology, radiology, and computed tomography scanning. These calves were morphologically similar and displayed severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by shortening and compression of the body due to reduced length of the spine and the long bones of the limbs. The vicerocranium had severe dysplasia and palatoschisis. The bones had small irregular diaphyses and enlarged epiphyses consisting only of chondroid tissue. The sire and a total of four affected half-sib offspring and their dams were genotyped with the BovineHD SNP array to map the defect in the genome. Significant genetic linkage was obtained for several regions of the bovine genome including chromosome 5 where whole genome sequencing of an affected calf revealed a COL2A1 point mutation (g.32473300 G > A). This private sequence variant was predicted to affect splicing as it altered the conserved splice donor sequence GT at the 5’-end of COL2A1 intron 36, which was changed to AT. All five available cases carried the mutant allele in heterozygous state and all five dams were homozygous wild type. The sire VH Cadiz Captivo was shown to be a gonadal and somatic mosaic as assessed by the presence of the mutant allele at levels of about 5 % in peripheral blood and 15 % in semen. Conclusions The phenotypic and genetic findings are comparable to a previously reported COL2A1 missense mutation underlying lethal chondrodysplasia in the offspring of a mosaic French Holstein sire (Igale Masc). The identified independent spontaneous splice site variant in COL2A1 most likely caused chondrodysplasia and must have occurred during the early foetal development of the sire. This study provides a first example of a dominant COL2A1 splice site variant as candidate causal mutation of a severe lethal chondrodysplasia phenotype. Germline mosaicism is a relatively frequent mechanism in the origin of genetic disorders and explains the prevalence of a certain fraction of affected offspring. Paternal dominant de novo mutations are a risk in cattle breeding, especially because the ratio of defective offspring may be very high and be associated with significant animal welfare problems.
Resumo:
BACKGROUND: Mode of inheritance of equine recurrent airway obstruction (RAO) is unknown. HYPOTHESIS: Major genes are responsible for RAO. ANIMALS: Direct offspring of 2 RAO-affected Warmblood stallions (n = 197; n = 163) and a representative sample of Swiss Warmbloods (n = 401). METHODS: One environmental and 4 genetic models (general, mixed inheritance, major gene, and polygene) were tested for Horse Owner Assessed Respiratory Signs Index (1-4, unaffected to severely affected) by segregation analyses of the 2 half-sib sire families, both combined and separately, using prevalences estimated in a representative sample. RESULTS: In all data sets the mixed inheritance model was most likely to explain the pattern of inheritance. In all 3 datasets the mixed inheritance model did not differ significantly from the general model (P= .62, P= 1.00, and P= .27) but was always better than the major gene model (P < .01) and the polygene model (P < .01). The frequency of the deleterious allele differed considerably between the 2 sire families (P= .23 and P= .06). In both sire families the displacement was large (t= 17.52 and t= 12.24) and the heritability extremely large (h(2)= 1). CONCLUSIONS AND CLINICAL RELEVANCE: Segregation analyses clearly reveal the presence of a major gene playing a role in RAO. In 1 family, the mode of inheritance was autosomal dominant, whereas in the other family it was autosomal recessive. Although the expression of RAO is influenced by exposure to hay, these findings suggest a strong, complex genetic background for RAO.
Resumo:
Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy-Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR-); C1 (F4abRPA/F4acR-/F4adRFA); C2 (F4abRPA/F4acR-/F4adRPA); D1 (F4abR-/F4acR-/F4adRFA); D2 (F4abR-/F4acR-/F4adRPA); E (F4abR-/F4acR-/F4adR-).
Resumo:
White spotting phenotypes have been intensively studied in horses, and although similar phenotypes occur in the donkey, little is known about the molecular genetics underlying these patterns in donkeys. White spotting in donkeys can range from only a few white areas to almost complete depigmentation and is characterised by a loss of pigmentation usually progressing from a white spot in the hip area. Completely white-born donkeys are rare, and the phenotype is characterised by the complete absence of pigment resulting in pink skin and a white coat. A dominant mode of inheritance has been demonstrated for spotting in donkeys. Although the mode of inheritance for the completely white phenotype in donkeys is not clear, the phenotype shows similarities to dominant white in horses. As variants in the KIT gene are known to cause a range of white phenotypes in the horse, we investigated the KIT gene as a potential candidate gene for two phenotypes in the donkey, white spotting and white. A mutation analysis of all 21 KIT exons identified a missense variant in exon 4 (c.662A>C; p.Tyr221Ser) present only in a white-born donkey. A second variant affecting a splice donor site (c.1978+2T>A) was found exclusively in donkeys with white spotting. Both variants were absent in 24 solid-coloured controls. To the authors' knowledge, this is the first study investigating genetic mechanisms underlying white phenotypes in donkeys. Our results suggest that two independent KIT alleles are probably responsible for white spotting and white in donkeys.
Resumo:
An autosomal dominant form of isolated GH deficiency (IGHD II) can result from heterozygous splice site mutations that weaken recognition of exon 3 leading to aberrant splicing of GH-1 transcripts and production of a dominant-negative 17.5-kDa GH isoform. Previous studies suggested that the extent of missplicing varies with different mutations and the level of GH expression and/or secretion. To study this, wt-hGH and/or different hGH-splice site mutants (GH-IVS+2, GH-IVS+6, GH-ISE+28) were transfected in rat pituitary cells expressing human GHRH receptor (GC-GHRHR). Upon GHRH stimulation, GC-GHRHR cells coexpressing wt-hGH and each of the mutants displayed reduced hGH secretion and intracellular GH content when compared with cells expressing only wt-hGH, confirming the dominant-negative effect of 17.5-kDa isoform on the secretion of 22-kDa GH. Furthermore, increased amount of 17.5-kDa isoform produced after GHRH stimulation in cells expressing GH-splice site mutants reduced production of endogenous rat GH, which was not observed after GHRH-induced increase in wt-hGH. In conclusion, our results support the hypothesis that after GHRH stimulation, the severity of IGHD II depends on the position of splice site mutation leading to the production of increasing amounts of 17.5-kDa protein, which reduces the storage and secretion of wt-GH in the most severely affected cases. Due to the absence of GH and IGF-I-negative feedback in IGHD II, a chronic up-regulation of GHRH would lead to an increased stimulatory drive to somatotrophs to produce more 17.5-kDa GH from the severest mutant alleles, thereby accelerating autodestruction of somatotrophs in a vicious cycle.
Resumo:
In groves of ectomycorrhizal caesalpiniaceous species in the Atlantic coastal forest of Central Africa the dominant tree Microberlinia bisulcata, which is shade-intolerant as a seedling but highly light-responding as a sapling, shows very limited regeneration. M. bisulcata saplings were mapped in an 82.5-ha plot at Korup and found to be located significantly far (>40 m) away from adults, a result confirmed by direct testing in a second 56-ha plot. Sapling growth over 6 years, the distribution of newly emerging seedlings around adults, recruitment of saplings in a large opening and the outward extent of seedlings at the grove edge were also investigated. Two processes appear to have been operating: (1) a very strong and consistent restriction of the very numerous seedlings establishing after masting close to adults, and (2) a strong but highly spatially variable promotion of distant survivors by increased light from the deaths of large trees of species other than M. bisulcata (which itself has very low mortality rate). This leads to an apparent escape-from-adults effect. To maintain saplings in the shade between multiple short periods of release ectomycorrhizal connections to other co-occurring caesalp species may enable a rachet-type mechanism. The recorded sapling dynamics currently contribute an essential part of the long-term cycling of the groves. M. bisulcata is an interesting example of an important group of tropical trees, particularly in Africa, which are both highly light-demanding when young yet capable also of forming very large forest emergents. To more comprehensively explain tropical tree responses, the case is made for adding a new dimension to the trade-off concept of early tree light-response versus adult longevity.
Resumo:
Where one or a few tree species reach local high abundance, different ecological factors may variously facilitate or hinder their regeneration. Plant pathogens are thought to be one of those possible agents which drive intraspecific density-dependent mortality of tree seedlings in tropical forests. Experimental evidence for this is scarce, however. In an African rain forest at Korup, we manipulated the density of recently established seedlings (~5–8 wk old; low vs. high-density) of two dominant species of contrasting recruitment potential, and altered their exposure to pathogens using a broad-spectrum fungicide. Seedling mortality of the abundantly recruiting subcanopy tree Oubanguia alata was strongly density-dependent after 7 mo, yet fungicide-treated seedlings had slightly higher mortality than controls. By contrast, seedling mortality of the poorly recruiting large canopy-emergent tree Microberlinia bisulcata was unaffected by density or fungicide. Ectomycorrhizal colonization of M. bisulcata was not affected by density or fungicide either. For O. alata, adverse effects of fungicide on its vesicular arbuscular mycorrhizas may have offset any possible benefit of pathogen removal. We tentatively conclude that fungal pathogens are not a likely major cause of density dependence in O. alata, or of early post-establishment mortality in M. bisulcata. They do not explain the latter's currently very low recruitment rate at Korup.