51 resultados para deposition on surfaces
Resumo:
Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.
Resumo:
Samples obtained from different locations within the prototype liquid metal spallation target MEGAPIE irradiated in 2006 at PSI were analysed using γ-spectrometry. A variety of radionuclides formed by reaction of the target material, lead–bismuth eutectic (LBE), with the proton beam and secondary particles were identified. While nuclides representing the target material itself (207Bi) and nuclides of noble metals were found in LBE samples throughout the target, nuclides of electropositive metals were found to be quantitatively deposited on free surfaces and material interfaces within the target system. This behaviour is analysed in more detail based on results obtained for three nuclides representing groups of elements with distinct chemical behaviour, namely 207Bi, 194Hg/Au and 173Lu. Quantitative analysis results are given and compared with predictions obtained using nuclear physics calculations for those nuclides showing rather homogeneous distribution within the target. Possible reasons for the separation of radionuclides from the liquid metal and their deposition on surfaces are given, and consequences arising for nuclear facilities utilizing liquid metals are discussed.
Resumo:
Lesion formation on root surfaces of human posterior teeth was studied in acetate/lactate buffers with a background electrolyte composition based on plaque fluid analyses. Lesion depth after 28 days at 37 degrees C was measured in relation to: the presence or absence of cementum; the concentration of undissociated buffer; the presence or absence of magnesium ions at plaque fluid concentration. Each factor was evaluated at several values of -log(ion activity product for hydroxyapatite): pI(HA). Solutions were formulated to minimize variation in pH, which varied by < or =0.03 for a given comparison (individual pI(HA)) and by 0.42-0.82 over the range of pI(HA) within experiments. Lesions on surfaces from which cementum had been ground were significantly deeper than on intact surfaces, but this is considered to be due to subsurface mechanical damage and not to a solubility difference. Neither the concentration of undissociated buffer nor the presence of magnesium ions significantly affected lesion depth. Lesion depth was strongly influenced by the correlated variations in pI(HA) and pH. At pI(HA) 54 and 55, only extremely shallow lesions formed. From pI(HA) 56, lesion depth increased with increasing pI(HA). The results confirm that the solubility of the mineral of root tissues is higher than that of hydroxyapatite, but indicate that it is probably lower than suggested by Hoppenbrouwers et al. [Arch Oral Biol 1987;32:319-322]. For calcium concentrations of 3-12 mM, the critical pH for root tissue mineral was calculated as 5.22-5.66 assuming solubility equivalent to pI(HA) 54 and 5.08-5.51 assuming pI(HA) 55.
Resumo:
Tin-containing fluoride solutions can reduce erosive tissue loss, but the effects of the reaction between tin and enamel are still not clear. During a 10-d period, enamel specimens were cyclically demineralized (0.05 M citric acid, pH 2.3, 6 x 5 min d(-1)) and remineralized (between the demineralization cycles and overnight). In the negative-control group, no further treatment was performed. Three groups were treated (2 x 2 min d(-1)) with tin-containing fluoride solutions (400, 1,400 or 2,100 ppm Sn2+, all 1,500 ppm F-, pH 4.5). Three additional groups were treated with test solutions twice daily, but without demineralization. Tissue loss was determined profilometrically. Energy-dispersive X-ray spectroscopy was used to measure the tin content on and within three layers (10 mum each) beneath the surface. In addition, scanning electron microscopy was conducted. All test preparations significantly reduced tissue loss. Deposition of tin on surfaces was higher without erosion than with erosion, but no incorporation of tin into enamel was found without demineralization. Under erosive conditions, both highly concentrated solutions led to the incorporation of tin up to a depth of 20 mum; the less-concentrated solution led to small amounts of tin in the outer 10 mum. The efficacy of tin-containing solutions seems to depend mainly on the incorporation of tin into enamel.
Resumo:
BACKGROUND: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo. However, DXS is a strong anticoagulant and systemic use of this substance in a clinical setting might therefore be compromised. It was the aim of this study to investigate a novel, fully synthetic EC-protectant with reduced inhibition of the coagulation system. METHOD: By screening with standard complement (CH50) and coagulation assays (activated partial thromboplastin time, aPTT), a conjugate of tyrosine sulfate to a polymer-backbone (sTyr-PAA) was identified as a candidate EC-protectant. The pathway-specificity of complement inhibition by sTyr-PAA was tested in hemolytic assays. To further characterize the substance, the effects of sTyr-PAA and DXS on complement deposition on pig cells were compared by flow cytometry and cytotoxicity assays. Using fluorescein-labeled sTyr-PAA (sTyr-PAA-Fluo), the binding of sTyr-PAA to cell surfaces was also investigated. RESULTS: Of all tested compounds, sTyr-PAA was the most effective substance in inhibiting all three pathways of complement activation. Its capacity to inhibit the coagulation cascade was significantly reduced as compared with DXS. sTyr-PAA also dose-dependently inhibited deposition of human complement on pig cells and this inhibition correlated with the binding of sTyr-PAA to the cells. Moreover, we were able to demonstrate that sTyr-PAA binds preferentially and dose-dependently to damaged EC. CONCLUSIONS: We could show that sTyr-PAA acts as an EC-protectant by binding to the cells and protecting them from complement-mediated damage. It has less effect on the coagulation system than DXS and may therefore have potential for in vivo application.
Resumo:
Degradation of non-volatile organic compounds-environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)-in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0m s(-1) (3200Lmin(-1)), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10Lmin(-1). Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10Hz or 50Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative "degradation" efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.
Resumo:
PURPOSE Whole saliva comprises components of the salivary pellicle that spontaneously forms on surfaces of implants and teeth. However, there are no studies that functionally link the salivary pellicle with a possible change in gene expression. MATERIALS AND METHODS This study examined the genetic response of oral fibroblasts exposed to the salivary pellicle and whole saliva. Oral fibroblasts were seeded onto a salivary pellicle and the respective untreated surface. Oral fibroblasts were also exposed to freshly harvested sterile-filtered whole saliva. A genome-wide microarray of oral fibroblasts was performed, followed by gene ontology screening with DAVID functional annotation clustering, KEGG pathway analysis, and the STRING functional protein association network. RESULTS Exposure of oral fibroblasts to saliva caused 61 genes to be differentially expressed (P < .05). Gene ontology screening assigned the respective genes into 262 biologic processes, 3 cellular components, 13 molecular functions, and 7 pathways. Most remarkable was the enrichment in the inflammatory response. None of the genes regulated by whole saliva was significantly changed when cells were placed onto a salivary pellicle. CONCLUSION The salivary pellicle per se does not provoke a significant inflammatory response of oral fibroblasts in vitro, whereas sterile-filtered whole saliva does produce a strong inflammatory response.
Resumo:
Background Activation of the endothelium, complement activation and generation of cytokines are known events during ischemia-reperfusion (I/R) that mediate tissue injury. Our aim was to elucidate their respective participation at the onset of the reperfusion phase. Tourniquet application in hand surgery causes short-term ischemia, followed by reperfusion and was therefore used as the model in this study. Methods Ten patients were included in the study after obtaining informed consent. A tourniquet was placed on the upper arm and inflated to 250 mmHg for 116 ± 16 min, during which the surgery was performed. Venous blood and tissue samples from the surgical area were taken at baseline as well as 0, 2, and 10 min after reperfusion and analyzed for the following parameters: Endothelial integrity and/or activation were analyzed by measuring heparan sulfate and syndecan-1 in serum, and vWF, heparan sulfate proteoglycan as well as CD31on tissue. Complement activation was determined by C3a and C4d levels in plasma, levels of C1-inhibitor in serum, and IgG, IgM, C3b/c, and C4b/c deposition on tissue. Cytokines and growth factors IL-5, IL-6, IL-7, IL-8, IL-10, IL-17, G-CSF, GM-CSF, MCP-1, TNFα, VEGF, and PDGF bb were measured in the serum. Finally, CK-MM levels were determined in plasma as a measure for muscle necrosis. Results Markers for endothelial activation and/or integrity as well as complement activation showed no significant changes until 10 min reperfusion. Among the measured cytokines, IL-6, IL-7, IL-17, TNFα, GM-CSF, VEGF, and PDGF bb were significantly increased at 10 min reperfusion with respect to baseline. CK-MM showed a rise from baseline at the onset of reperfusion (p < 0.001) and dropped again at 2 min (p < 0.01) reperfusion, suggesting ischemic muscle damage. Conclusions In this clinical model of I/R injury no damage to the endothelium, antibody deposition or complement activation were observed during early reperfusion. However, an increase of pro-inflammatory cytokines and growth factors was shown, suggesting a contribution of these molecules in the early stages of I/R injury.
Resumo:
Despite numerous studies about nitrogen-cycling in forest ecosystems, many uncertainties remain, especially regarding the longer-term nitrogen accumulation. To contribute to filling this gap, the dynamic process-based model TRACE, with the ability to simulate 15N tracer redistribution in forest ecosystems was used to study N cycling processes in a mountain spruce forest of the northern edge of the Alps in Switzerland (Alptal, SZ). Most modeling analyses of N-cycling and C-N interactions have very limited ability to determine whether the process interactions are captured correctly. Because the interactions in such a system are complex, it is possible to get the whole-system C and N cycling right in a model without really knowing if the way the model combines fine-scale interactions to derive whole-system cycling is correct. With the possibility to simulate 15N tracer redistribution in ecosystem compartments, TRACE features a very powerful tool for the validation of fine-scale processes captured by the model. We first adapted the model to the new site (Alptal, Switzerland; long-term low-dose N-amendment experiment) by including a new algorithm for preferential water flow and by parameterizing of differences in drivers such as climate, N deposition and initial site conditions. After the calibration of key rates such as NPP and SOM turnover, we simulated patterns of 15N redistribution to compare against 15N field observations from a large-scale labeling experiment. The comparison of 15N field data with the modeled redistribution of the tracer in the soil horizons and vegetation compartments shows that the majority of fine-scale processes are captured satisfactorily. Particularly, the model is able to reproduce the fact that the largest part of the N deposition is immobilized in the soil. The discrepancies of 15N recovery in the LF and M soil horizon can be explained by the application method of the tracer and by the retention of the applied tracer by the well developed moss layer, which is not considered in the model. Discrepancies in the dynamics of foliage and litterfall 15N recovery were also observed and are related to the longevity of the needles in our mountain forest. As a next step, we will use the final Alptal version of the model to calculate the effects of climate change (temperature, CO2) and N deposition on ecosystem C sequestration in this regionally representative Norway spruce (Picea abies) stand.
Resumo:
Aim. External fertilisation requires synchronisation of gamete release between the two sexes. Adequate synchronisation is essential in aquatic media because sperm is very short-lived in water. In the cichlid Lamprologus callipterus, fertilisation of the eggs takes place inside an empty snail shell, where females stay inside the shell and males have to ejaculate into the shell opening. This spawning pattern makes the coordination of gamete release difficult. Methods. This study examined the synchronisation of males and females during egg laying. Results. The results showed that the male initiates each spawning sequence and that sperm release and egg laying are very well synchronised. 68% of all sperm releases occurred at exactly the same time when the female laid an egg, and 99% of ejaculations occurred within ±5 seconds from egg deposition. On average 95 eggs are laid one by one with intervals of several minutes between subsequent eggs, leading to a total spawning duration in excess of six hours. Conclusions. We discuss this exceptional spawning pattern and how it might reflect a conflict between the sexes, with males attempting to induce egg laying and females extending the egg laying period to raise the chance for parasitic males to participate in spawning.
Resumo:
ABSTRACT: Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects.Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration.Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.
Resumo:
Correspondence establishment is a key step in statistical shape model building. There are several automated methods for solving this problem in 3D, but they usually can only handle objects with simple topology, like that of a sphere or a disc. We propose an extension to correspondence establishment over a population based on the optimization of the minimal description length function, allowing considering objects with arbitrary topology. Instead of using a fixed structure of kernel placement on a sphere for the systematic manipulation of point landmark positions, we rely on an adaptive, hierarchical organization of surface patches. This hierarchy can be built on surfaces of arbitrary topology and the resulting patches are used as a basis for a consistent, multi-scale modification of the surfaces' parameterization, based on point distribution models. The feasibility of the approach is demonstrated on synthetic models with different topologies.
Resumo:
Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.
Resumo:
BACKGROUND AND OBJECTIVES: Complement inhibition is considered important in the mechanism of action of intravenous immunoglobulin (IVIG) in a number of inflammatory and autoimmune disorders. The capacity of different IVIG preparations to 'scavenge' activated C3 and thereby inhibit complement activation was assessed by a new in vitro assay. MATERIALS AND METHODS: Diluted human serum as a complement source, with or without addition of different concentrations of IVIG, was incubated in microtitre plates coated with heat-aggregated human IgG. Complement scavenging was measured by detecting reduced C3 binding and determining fluid phase C3b-IgG complex formation. Complement activation induced by the IVIG preparations was measured as C5a formation. RESULTS: All IVIG preparations exhibited a dose-dependent inhibition of C3b deposition, correlating strongly with binding of C3b to fluid-phase IgG, but the extent of complement scavenging varied considerably between different IVIG preparations. At an IVIG concentration of 0.9 mg/ml, the inhibition of C3b deposition ranged from 72 +/- 16% to 22 +/- 4.1%. The reduction of C3b deposition on the complement-activating surface was not due to IVIG-induced complement activation in the fluid phase, as shown by the low C5a formation in the presence of serum. CONCLUSION: In vitro analysis allows comparison of the complement-inhibitory properties of IVIG preparations. The extent of complement scavenging varies between the products.