126 resultados para cingulate gyrus


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity in 10 healthy volunteers. In addition to blood-oxygen-level-dependent (BOLD) contrast we assessed the effect of dopaminergic depletion on prolactin response, peripheral markers for dopamine and norepinephrine. In the placebo condition we found increased activation in the left caudate and left cingulate gyrus during anticipation of reward. In the α-methylparatyrosine condition there was no significant brain activation during anticipation of reward or loss. In α-methylparatyrosine, anticipation of reward vs. loss increased activation in the right insula, left frontal, right parietal cortices and right cingulate gyrus. Comparing placebo versus α-methylparatyrosine showed increased activation in the left cingulate gyrus during anticipation of reward and the left medial frontal gyrus during anticipation of loss. α-methylparatyrosine reduced levels of dopamine in urine and homovanillic acid in plasma and increased prolactin. No significant effect of α-methylparatyrosine was found on norepinephrine markers. Our findings implicate distinct patterns of BOLD underlying reward processing following dopamine depletion, suggesting a role of dopaminergic neurotransmission for anticipation of monetary reward.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Focal onset epilepsies most often occur in the temporal lobes. To improve diagnosis and therapy of patients suffering from pharmacoresistant temporal lobe epilepsy it is highly important to better understand the underlying functional and structural networks. In mesial temporal lobe epilepsy (MTLE) widespread functional networks are involved in seizure generation and propagation. In this study we have analyzed the spatial distribution of hemodynamic correlates (HC) to interictal epileptiform discharges on simultaneous EEG/fMRI recordings and relative grey matter volume (rGMV) reductions in 10 patients with MTLE. HC occurred beyond the seizure onset zone in the hippocampus, in the ipsilateral insular/operculum, temporo-polar and lateral neocortex, cerebellum, along the central sulcus and bilaterally in the cingulate gyrus. rGMV reductions were detected in the middle temporal gyrus, inferior temporal gyrus and uncus to the hippocampus, the insula, the posterior cingulate and the anterior lobe of the cerebellum. Overlaps between HC and decreased rGMV were detected along the mesolimbic network ipsilateral to the seizure onset zone. We conclude that interictal epileptic activity in MTLE induces widespread metabolic changes in functional networks involved in MTLE seizure activity. These functional networks are spatially overlapping with areas that show a reduction in relative grey matter volumes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CONTEXT: A characteristic feature of borderline personality disorder (BPD) is self-injurious behavior in conjunction with stress-induced reduction of pain perception. Reduced pain sensitivity has been experimentally confirmed in patients with BPD, but the neural correlates of antinociceptive mechanisms in BPD are unknown. We predicted that heat stimuli in patients with BPD would activate brain areas concerned with cognitive and emotional evaluation of pain. OBJECTIVE: To assess the psychophysical properties and neural correlates of altered pain processing in patients with BPD. DESIGN: Case-control study. SETTING: A university hospital. PARTICIPANTS: Twelve women with BPD and self-injurious behavior and 12 age-matched control subjects. INTERVENTIONS: Psychophysical assessment and blood oxygen level-dependent functional magnetic resonance imaging during heat stimulation with fixed-temperature heat stimuli and individual-temperature stimuli adjusted for equal subjective pain in all the participants. MAIN OUTCOME MEASURE: Blood oxygen level-dependent functional magnetic resonance imaging signal changes during heat pain stimulation. RESULTS: Patients with BPD had higher pain thresholds and smaller overall volumes of activity than controls in response to identical heat stimuli. When the stimulus temperature was individually adjusted for equal subjective pain level, overall volumes of activity were similar, although regional patterns differed significantly. Patient response was greater in the dorsolateral prefrontal cortex and smaller in the posterior parietal cortex. Pain also produced neural deactivation in the perigenual anterior cingulate gyrus and the amygdala in patients with BPD. CONCLUSION: The interaction between increased pain-induced response in the dorsolateral prefrontal cortex and deactivation in the anterior cingulate and the amygdala is associated with an antinociceptive mechanism in patients with BPD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: NoGo-stimuli during a Continuous Performance Test (CPT) activate prefrontal brain structures such as the anterior cingulate gyrus and lead to an anteriorisation of the positive electrical field of the NoGo-P300 relative to the Go-P300, so-called NoGo-anteriorisation (NGA). NGA during CPT is regarded as a neurophysiological standard index for cognitive response control. While it is known that patients with chronic schizophrenia exhibit a significant reduction in NGA, it is unclear whether this also occurs in patients undergoing their first-episode. Thus, the aim of the present study was to determine NGA in a group of patients with first-episode schizophrenia by utilizing a CPT paradigm. METHODS: Eighteen patients with first-episode schizophrenia and 18 matched healthy subjects were investigated electrophysiologically during a cued CPT, and the parameters of the Go- and NoGo-P300 were determined using microstate analysis. Low resolution tomography analysis (LORETA) was used for source determination. RESULTS: Due to a more posterior Go- and a more anterior NoGo-centroid, NGA was greater in patients than in healthy controls. LORETA indicated the same sources for both groups after Go-stimuli, but a more anterior source in patients after NoGo-stimuli. In patients P300-amplitude responses to both Go- and NoGo-stimuli were decreased, and P300-latency to NoGo-stimuli was increased. After the Go-stimuli false reactions and reaction times were increased in patients. CONCLUSIONS: Attention was reduced in patients with first-episode schizophrenia, as indicated by more false reactions, prolongation of reaction time, P300-latencies and by a decrease in P300-amplitude. Significantly however, the NGA and prefrontal LORETA-sources indicate intact prefrontal brain structures in first-episode schizophrenia patients. Previously described changes in this indicator of prefrontal function may be related to a progressive decay in chronic schizophrenia. SIGNIFICANCE: The results support the idea of a possible new biological marker of first episode psychosis, which may be a useful parameter for the longitudinal measurement of changing prefrontal brain function in a single schizophrenia patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heschl's gyrus (HG) is functionally involved in the genesis of auditory verbal hallucinations (AVH). This dysfunction seems to be structurally facilitated. The aim of the study was to analyze macrostructural features of HG in a group of patients reporting AVH who demonstrated white matter diffusion tensor imaging abnormalities reported previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced motor activity has been reported in schizophrenia and was associated with subtype, psychopathology and medication. Still, little is known about the neurobiology of motor retardation. To identify neural correlates of motor activity, resting state cerebral blood flow (CBF) was correlated with objective motor activity of the same day. Participants comprised 11 schizophrenia patients and 14 controls who underwent magnetic resonance imaging with arterial spin labeling and wrist actigraphy. Patients had reduced activity levels and reduced perfusion of the left parahippocampal gyrus, left middle temporal gyrus, right thalamus, and right prefrontal cortex. In controls, but not in schizophrenia, CBF was correlated with activity in the right thalamic ventral anterior (VA) nucleus, a key module within basal ganglia-cortical motor circuits. In contrast, only in schizophrenia patients positive correlations of CBF and motor activity were found in bilateral prefrontal areas and in the right rostral cingulate motor area (rCMA). Grey matter volume correlated with motor activity only in the left posterior cingulate cortex of the patients. The findings suggest that basal ganglia motor control is impaired in schizophrenia. In addition, CBF of cortical areas critical for motor control was associated with volitional motor behavior, which may be a compensatory mechanism for basal ganglia dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Economic theory distinguishes two concepts of utility: decision utility, objectively quantifiable by choices, and experienced utility, referring to the satisfaction by an obtainment. To date, experienced utility is typically measured with subjective ratings. This study intended to quantify experienced utility by global levels of neuronal activity. Neuronal activity was measured by means of electroencephalographic (EEG) responses to gain and omission of graded monetary rewards at the level of the EEG topography in human subjects. A novel analysis approach allowed approximating psychophysiological value functions for the experienced utility of monetary rewards. In addition, we identified the time windows of the event-related potentials (ERP) and the respective intracortical sources, in which variations in neuronal activity were significantly related to the value or valence of outcomes. Results indicate that value functions of experienced utility and regret disproportionally increase with monetary value, and thus contradict the compressing value functions of decision utility. The temporal pattern of outcome evaluation suggests an initial (∼250 ms) coarse evaluation regarding the valence, concurrent with a finer-grained evaluation of the value of gained rewards, whereas the evaluation of the value of omitted rewards emerges later. We hypothesize that this temporal double dissociation is explained by reward prediction errors. Finally, a late, yet unreported, reward-sensitive ERP topography (∼500 ms) was identified. The sources of these topographical covariations are estimated in the ventromedial prefrontal cortex, the medial frontal gyrus, the anterior and posterior cingulate cortex and the hippocampus/amygdala. The results provide important new evidence regarding “how,” “when,” and “where” the brain evaluates outcomes with different hedonic impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although chronic pelvic pain syndrome impairs the life of millions of people worldwide, the exact pathomechanisms involved remain to be elucidated. As with other chronic pain syndromes, the central nervous system may have an important role in chronic pelvic pain syndrome. Thus, we assessed brain alterations associated with abnormal pain processing in patients with chronic pelvic pain syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most consistent findings in the neuroscience of autism is hypoactivation of the fusiform gyrus (FG) during face processing. In this study the authors examined whether successful facial affect recognition training is associated with an increased activation of the FG in autism. The effect of a computer-based program to teach facial affect identification was examined in 10 individuals with high-functioning autism. Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) changes in the FG and other regions of interest, as well as behavioral facial affect recognition measures, were assessed pre- and posttraining. No significant activation changes in the FG were observed. Trained participants showed behavioral improvements, which were accompanied by higher BOLD fMRI signals in the superior parietal lobule and maintained activation in the right medial occipital gyrus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial meningitis is associated with high rates of morbidity and mortality, despite advances in antibiotic therapy. Meningitis caused by Streptococcus pneumoniae is associated with a particularly high incidence of neurological sequelae including deficits resulting from damage to the hippocampus. Previous studies have documented that in neonatal rats with experimental pneumococcal meningitis, cells in the subgranular layer of the dentate gyrus undergo apoptosis. The aim of the present study was to define in more detail the nature of the dying cells in the dentate gyrus. Using bromodeoxyuridine labeling at different times before infection combined with immunocytochemistry, we identified the vulnerable cells as those which underwent mitosis 6-10 days before infection. A majority of these cells are of neuronal lineage. Thus, immature neuronal cells several days after the last cell division are preferentially triggered into apoptosis during pneumococcal meningitis. The loss of these cells may contribute to the long-lasting impairment of hippocampal function identified in animal models and in humans after bacterial meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Excitotoxic neuronal injury by action of the glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype have been implicated in the pathogenesis of brain damage as a consequence of bacterial meningitis. The most potent and selective blocker of NMDA receptors containing the NR2B subunit is (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (RO 25-6981). Here we evaluated the effect of RO 25-6981 on hippocampal neuronal apoptosis in an infant rat model of meningitis due to Streptococcus pneumoniae. Animals were randomized for treatment with RO 25-6981 at a dosage of either 0.375 mg (15 mg/kg; n = 28) or 3.75 mg (150 mg/kg; n = 15) every 3 h or an equal volume of sterile saline (250 microl; n = 40) starting at 12 h after infection. Eighteen hours after infection, animals were assessed clinically and seizures were observed for a period of 2 h. At 24 h after infection animals were sacrificed and brains were examined for apoptotic injury to the dentate granule cell layer of the hippocampus. RESULTS: Treatment with RO 25-6981 had no effect on clinical scores, but the incidence of seizures was reduced (P < 0.05 for all RO 25-6981 treated animals combined). The extent of apoptosis was not affected by low or high doses of RO 25-6981. Number of apoptotic cells (median [range]) was 12.76 [3.16-25.3] in animals treated with low dose RO 25-6981 (control animals 13.8 [2.60-31.8]; (P = NS) and 9.8 [1.7-27.3] (controls: 10.5 [2.4-21.75]) in animals treated with high dose RO 25-6981 (P = NS). CONCLUSIONS: Treatment with a highly selective blocker of NMDA receptors containing the NR2B subunit failed to protect hippocampal neurons from injury in this model of pneumococcal meningitis, while it had some beneficial effect on the incidence of seizures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with chronic pain disorders often show somatosensory disturbances that are considered to be functional. This paper aims at a more precise clinical description and at a documentation of functional neuroimaging correlates of this phenomenon. We examined 30 consecutive patients with unilaterally accentuated chronic pain not explained by persistent peripheral tissue damage and ipsilateral somatosensory disturbances including upper and lower extremities and trunk. The patients were assessed clinically and with conventional brain CT or MRI scan. In the last 11 patients functional neuroimaging was carried out (18-fluordeoxyglucose positron emission tomography=FDG-PET). Depressive symptoms were assessed with the Hamilton depression scale (HAMD-17) and pain intensity was rated with a visual analogue scale for pain (VAS). All patients suffered from mild to moderate depressive symptoms. All patients had experienced a prolonged antecedent phase of severe emotional distress; most of them remembered a "trigger episode of somatic pain" on the affected side. Somatosensory deficits were a replicable hyposensitivity to touch and heat perception of nondermatomal distribution. Conventional imaging procedures (brain CT or MRI scans) showed no structural changes. However, in 11 patients functional imaging with FDG-PET showed a significant hypometabolic pattern of changes in cortical and subcortical areas, mainly in the post-central gyrus, posterior insula, putamen, and anterior cingulate cortex. In summary, pain-related nondermatomal somatosensory deficits (NDSDs) are a phenomenon involving biological as well as psychosocial factors with replicable neuroperceptive clinical findings and a complex neurodysfunctional pattern in the FDG-PET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate mechanisms and structures underlying prefrontal response control and inhibition in boys suffering from attention-deficit/hyperactivity disorder (ADHD).