106 resultados para c reactive protein
Resumo:
QUESTIONS UNDER STUDY / PRINCIPLES: The value of postoperative pro-calcitonin (PCT) in the follow-up of patients with localised infections in the orthopaedic domain is unknown.
Resumo:
Providing care to a spouse with Alzheimer's disease (AD) may contribute to cardiovascular disease (CVD). The acute phase reactant C-reactive protein (CRP) is a well-established biomarker of an increased CVD risk.
Resumo:
To assess the predictive value of C-reactive protein (CRP) level for postoperative infectious complications after colorectal surgery.
Resumo:
OBJECTIVE: Only a few studies have investigated variations of different markers for inflammatory processes during the physiological menstrual cycle. The results are conflicting, particularly concerning the correlation between the marker leptin and steroid hormones. The aim of the study was to investigate the inflammatory markers C-reactive protein (CRP) and leptin in the serum of healthy, normally ovulating women and to correlate these with each other and with the hormones of the gonadal axis. A cycle-dependence of the markers studied would imply an exact timing of the blood sampling for clinical needs. DESIGN: Observational study investigating the two inflammatory markers CRP and leptin in relation to the hormonal pattern of the gonadal axis during the normal cycle. METHODS: Ovulatory cycles of 36 healthy, young, normo-androgenic women, having a normal body mass index were evaluated. Serum concentrations of leptin and CRP, as well as of follicle-stimulating hormone, luteinising hormone, 17beta-oestradiol, progesterone, prolactin (PRL) and free testosterone were measured every 1-2 days during one full cycle. RESULTS: Serum levels of leptin and CRP behaved differently during ovulatory cycles, with higher concentrations for leptin only during certain phases. Significant correlations were found in the follicular phase between leptin and PRL and leptin and free testosterone. CONCLUSIONS: Leptin levels change during the menstrual cycle. Leptin levels are more stable on cycle days 1-5 than later in the cycle. For precise cycle-independent measurements, these fluctuations have to be taken into account. There is no similar cyclic pattern for CRP.
Resumo:
BACKGROUND: Elevated plasma levels of interleukin (IL)-6, C-reactive protein (CRP), and D-dimer belong to the biological alterations of the "frailty syndrome," defining increased vulnerability for diseases and mortality with aging. We hypothesized that, compatible with premature frailty, chronic stress and age are related in predicting inflammation and coagulation activity in Alzheimer caregivers. METHODS: Plasma IL-6, CRP, and D-dimer levels were measured in 170 individuals (mean age 73 +/- 9 years; 116 caregivers, 54 noncaregiving controls). Demographic factors, diseases, drugs, and lifestyle variables potentially affecting inflammation and coagulation were obtained by history and adjusted for as covariates in statistical analyses. RESULTS: Caregivers had higher mean levels of IL-6 (1.38 +/- 1.42 vs 1.00 +/- 0.92 pg/mL, p =.032) and of D-dimer (723 +/- 530 vs 471 +/- 211 ng/mL, p <.001) than controls had. CRP levels were similar between groups (p =.44). The relationship between caregiver status and D-dimer was independent of covariates (p =.037) but affected by role overload. Age accounted for much of the relationship with IL-6. After controlling for covariates, the interaction between caregiver status and age was significant for D-dimer (beta =.20, p =.029) and of borderline significance for IL-6 (beta =.17, p =.090). Post hoc regression analyses indicated that, among caregivers, age was significantly correlated with both D-dimer (beta =.50, p <.001) and IL-6 (beta =.38, p =.001). Among controls, however, no significant relationship was observed between age and either D-dimer or IL-6. CONCLUSIONS: The interaction between caregiving status and age for D-dimer and IL-6 suggests the possibility that older caregivers could be at risk of a more rapid transition to the frailty syndrome and clinical manifestations of cardiovascular diseases.
Resumo:
OBJECTIVE: C-reactive protein (CRP) is a marker of systemic inflammation. Recently, it has been shown that CRP is present in amniotic fluid and fetal urine, and that elevated levels are associated with adverse pregnancy outcome. However, the precise source of amniotic fluid CRP, its regulation, and function during pregnancy is still a matter of debate. The present in vivo and in vitro studies were designed to investigate the production of CRP in human placental tissues. MATERIAL AND METHODS: Ten paired blood samples from peripheral maternal vein (MV), umbilical cord artery (UA) and umbilical vein (UV) were collected from women with elective caesarean sections at term. The placental protein accumulation capacity of hCG, hPL, leptin and CRP was compared with the dual in vitro perfusion method of an isolated cotyledon of human term placentae and quantified by ELISA. Values for accumulation (release) were calculated as total accumulation of maternal and fetal circuits normalized for tissue weight and duration of perfusion. For gene expression, RNA was extracted from placental tissue and reverse transcribed. RT-PCR and real-time PCR were performed using specific primers. RESULTS: The median (range) CRP level was significantly different between UA and UV [50.1 ng/ml (12.1-684.6) vs. 61 ng/ml (16.9-708.1)]. The median (range) difference between UV and UA was 9.3 ng/ml (2.2-31.6). A significant correlation was found between MV CRP and both UA and UV CRP levels. Median (range) MV CRP levels [2649 ng/ml (260.1-8299)] were 61.2 (6.5-96.8) fold higher than in the fetus. In vitro, the total accumulation rates (mean+/-SD) were 31+/-13 (mU/g/min, hCG), 1.16+/-0.19 (microg/g/min, hPL), 4.71+/-1.91 (ng/g/min, CRP), and 259+/-118 (pg/g/min, leptin). mRNA for hCG, hPL and leptin was detectable using conventional RT-PCR, while CRP mRNA could only be demonstrated by applying real-time RT-PCR. In the perfused tissue the transcript levels for the four proteins were comparable to those detected in the native control tissue. CONCLUSIONS: Our results demonstrate that the human placenta produces and releases CRP mainly into the maternal circulation similarly to other analyzed placental proteins under in vitro conditions. Further studies are needed to explore the exact role of placental CRP during pregnancy.
Resumo:
To study the association of the inflammatory markers serum amyloid A (SAA) and C-reactive protein (CRP) with retinal microvascular parameters in hypertensive individuals with and without type 2 diabetes.
Resumo:
OBJECTIVE: The objective of this study is to examine the diurnal variability of C-reactive protein (CRP) in obstructive sleep apnea (OSA). METHODS AND MEASUREMENTS: Participants included 44 women and men with untreated OSA (mean apnea/hypopnea index = 37.5, SD +/- 28) and 23 healthy adults with no OSA. Sleep was monitored with polysomnography in the University of California San Diego General Clinical Research Center. Over a 24-h period, blood was collected every 2 h, and CRP levels were determined. RESULTS: Adjusting for age, gender, and body mass index, a significant group by time interaction showed that patients with OSA had higher CRP levels during the daytime (8:00 a.m.-8:00 p.m.) versus the nighttime (10:00 p.m. until 6:00 p.m.; p < 0.001). Non-apneics showed no significant change in CRP levels during the 24 h. CONCLUSIONS: The findings indicate that sleep apnea patients have disproportionately elevated CRP levels in the day versus the nighttime, possibly as a result of carryover effects of nighttime arousal into the daytime.
Resumo:
BACKGROUND The correlation between noninvasive markers with endoscopic activity according to the modified Baron Index in patients with ulcerative colitis (UC) is unknown. We aimed to evaluate the correlation between endoscopic activity and fecal calprotectin (FC), C-reactive protein (CRP), hemoglobin, platelets, blood leukocytes, and the Lichtiger Index (clinical score). METHODS UC patients undergoing complete colonoscopy were prospectively enrolled and scored clinically and endoscopically. Samples from feces and blood were analyzed in UC patients and controls. RESULTS We enrolled 228 UC patients and 52 healthy controls. Endoscopic disease activity correlated best with FC (Spearman's rank correlation coefficient r = 0.821), followed by the Lichtiger Index (r = 0.682), CRP (r = 0.556), platelets (r = 0.488), blood leukocytes (r = 0.401), and hemoglobin (r = -0.388). FC was the only marker that could discriminate between different grades of endoscopic activity (grade 0, 16 [10-30] μg/g; grade 1, 35 [25-48] μg/g; grade 2, 102 [44-159] μg/g; grade 3, 235 [176-319] μg/g; grade 4, 611 [406-868] μg/g; P < 0.001 for discriminating the different grades). FC with a cutoff of 57 μg/g had a sensitivity of 91% and a specificity of 90% to detect endoscopically active disease (modified Baron Index ≥ 2). CONCLUSIONS FC correlated better with endoscopic disease activity than clinical activity, CRP, platelets, hemoglobin, and blood leukocytes. The strong correlation with endoscopic disease activity suggests that FC represents a useful biomarker for noninvasive monitoring of disease activity in UC patients.
Resumo:
There is emerging evidence for a link between sedentary behavior and mental health, although the mechanisms remain unknown. We tested if an underlying inflammatory process explains the association between sedentary behavior and depressive symptoms. We conducted a two year follow-up of 4964 (aged 64.5 ± 8.9 years) men and women from the English Longitudinal Study of Ageing, a cohort of community dwelling older adults. Self-reported TV viewing time was assessed at baseline as a marker of leisure time sedentary behavior. The eight-item Centre of Epidemiological Studies Depression (CES-D) scale was administered to measure depressive symptoms at follow-up. At baseline, TV time was associated with C-reactive protein (CRP), adjusted geometric mean CRP values were 2.94 mg/L (<2 h/d TV); 3.04 mg/L (2–4 h/d TV); 3.29 mg/L (4–6 h/d TV); 3.23 mg/L (>6 h/d TV). We observed both a direct association of TV time on CES-D score at follow-up (B = 0.08, 95% CI, 0.05, 0.10) and indirect effects (B = 0.07, 95% CI, 0.05, 0.08). The indirect effects were largely explained through lack of physical activity, smoking, and alcohol, but not by CRP or body mass index.
Resumo:
BACKGROUND/OBJECTIVES High intake of added sweeteners is considered to have a causal role in the pathogenesis of cardiometabolic disorders. Especially, high-fructose intake is regarded as potentially harmful to cardiometabolic health. It may cause not only weight gain but also low-grade inflammation, which represents an independent risk factor for developing type 2 diabetes and cardiovascular disease. In particular, fructose has been suggested to induce plasminogen activator inhibitor-1 (PAI-1) expression in the liver and to increase circulating inflammatory cytokines. We therefore aimed to investigate, whether high-fructose diet has an impact on PAI-1, monocyte chemoattractant protein-1 (MCP-1), e-selectin and C-reactive protein (CRP) concentrations in healthy humans. SUBJECTS/METHODS We studied 20 participants (12 males and 8 females) of the TUebingen FRuctose Or Glucose study. This is an exploratory, parallel, prospective, randomized, single-blinded, outpatient, hypercaloric, intervention study. The participants had a mean age of 30.9 ± 2.1 years and a mean body mass index of 26.0 ± 0.5 kg/m(2) and they received 150 g of either fructose or glucose per day for 4 weeks.Results:There were neither significant changes of PAI-1, MCP-1, e-selectin and CRP after fructose (n=10) and glucose (n=10) intervention nor treatment effects (all P>0.2). Moreover, we did not observe longitudinal associations of the inflammatory parameters with triglycerides, liver fat, visceral fat and body weight in the fructose group. CONCLUSIONS Temporary high-fructose intake does not seem to cause inflammation in apparently healthy people in this secondary analysis of a small feeding trial.
Resumo:
AIMS Heart failure with preserved ejection fraction (HFpEF) has a different pathophysiological background compared to heart failure with reduced ejection fraction (HFrEF). Tailored risk prediction in this separate heart failure group with a high mortality rate is of major importance. Inflammation may play an important role in the pathogenesis of HFpEF because of its significant contribution to myocardial fibrosis. We therefore aimed to assess the predictive value of C-reactive protein (CRP) in patients with HFpEF. METHODS AND RESULTS Plasma levels of CRP were determined in 459 patients with HFpEF in the LUdwigshafen Risk and Cardiovascular Health (LURIC) study using a high-sensitivity assay. During a median follow-up of 9.7 years 40% of these patients died. CRP predicted all-cause mortality with an adjusted hazard ratio (HR) of 1.20 [95% confidence interval (CI) 1.02-1.40, P = 0.018] and cardiovascular mortality with a HR of 1.32 (95% CI 1.08-1.62, P = 0.005) per increase of one standard deviation. CRP was a significantly stronger mortality predictor in HFpEF patients than in a control group of 522 HFrEF patients (for interaction, P = 0.015). Furthermore, CRP added prognostic value to N-terminal pro B-type natriuretic peptide (Nt-proBNP): the lowest 5-year mortality rate of 6.8% was observed for patients in the lowest tertile of Nt-proBNP as well as CRP. The mortality risk peaked in the group combining the highest values of Nt-proBNP and CRP with a 5-year rate of 36.5%. CONCLUSION It was found that CRP was an independent and strong predictor of mortality in HFpEF. This observation may reflect immunological processes with an adverse impact on the course of HFpEF.
Resumo:
Diagnosis of osteoarthritis (OA) is based upon the clinical orthopaedic examination and the radiographic assessment, both of which can be non-specific and insensitive in early joint disease. The aim of our study was to investigate if there is an increase in serum levels of C-reactive protein (CRP) in degenerative joint disease (DJD) and if CRP could be used to help diagnose OA. We also wished to investigate whether it was possible to distinguish a joint with clinically and radiographically confirmed OA from a healthy joint by comparing lactate dehydrogenase (LDH) levels within the synovial fluid and the serum. We have shown a difference in synovial LDH levels between diseased and healthy joints (P<0.0001). There was also a significant difference between LDH in arthritic synovial fluid and serum, with no correlation between the values. Despite the fact that the values of our clinical patients tended to be higher than the values of our control group (P=0.05) all measured values were within the normal limits of previous publications. From these data, we conclude that single measurements of serum CRP do not permit detection of OA in clinical patients and that serum LDH is not a reliable marker for osteoarthritis. LDH levels in the synovial fluid could be of diagnostic value for identifying osteoarthritis.