27 resultados para body fat distribution
Resumo:
UNLABELLED Obesity is a well-recognized risk factor for atrial fibrillation (AF), yet adiposity measures other than body mass index (BMI) have had limited assessment in relation to AF risk. We examined the associations of adiposity measures with AF in a biracial cohort of older adults. Given established racial differences in obesity and AF, we assessed for differences by black and white race in relating adiposity and AF. METHODS We analyzed data from 2,717 participants of the Health, Aging, and Body Composition Study. Adiposity measures were BMI, abdominal circumference, subcutaneous and visceral fat area, and total and percent fat mass. We determined the associations between the adiposity measures and 10-year incidence of AF using Cox proportional hazards models and assessed for their racial differences in these estimates. RESULTS In multivariable-adjusted models, 1-SD increases in BMI, abdominal circumference, and total fat mass were associated with a 13% to 16% increased AF risk (hazard ratio [HR] 1.14, 95% CI 1.02-1.28; HR 1.16, 95% CI 1.04-1.28; and HR 1.13, 95% CI 1.002-1.27). Subcutaneous and visceral fat areas were not significantly associated with incident AF. We did not identify racial differences in the associations between the adiposity measures and AF. CONCLUSION Body mass index, abdominal circumference, and total fat mass are associated with risk of AF for 10years among white and black older adults. Obesity is one of a limited number of modifiable risk factors for AF; future studies are essential to evaluate how obesity reduction can modify the incidence of AF.
Resumo:
OBJECTIVE: Define links between psychosocial parameters and metabolic variables in obese females before and after a low-calorie diet. METHOD: Nine female obese patients (age 36.1 +/- 7.1 years, body mass index [BMI] > 30 kg/m2) were investigated before and after a 6-week low-calorie diet accompanied by behavior therapy. Blood lipids, insulin sensitivity (Bergman protocol), fat distribution (by dual-energy X-ray absorptiometry [DEXA]), as well as psychological parameters such as depression, anger, anxiety, symptom load, and well-being, were assessed before and after the dieting period. RESULTS: The females lost 9.6 +/- 2.8 kg (p < .0001) of body weight, their BMI was reduced by 3.5 +/- 0.3 kg/m2 (p < .0001), and insulin sensitivity increased from 3.0 +/- 1.8 to 4.3 +/- 1.5 mg/kg (p = .05). Their abdominal fat content decreased from 22.3 +/- 5.5 to 18.9 +/- 4.5 kg (p < .0001). In parallel, psychological parameters such as irritability (p < .05) and cognitive control (p < .0001) increased, whereas feelings of hunger (p < .05), externality (p < .05), interpersonal sensitivity (p < .01), paranoid ideation (p < .05), psychoticism (p < .01), and global severity index (p < .01) decreased. Prospectively, differences in body fat (percent) were correlated to nervousness (p < .05). Waist-to-hip ratio (WHR) differences were significantly correlated to sociability (p < .05) and inversely to emotional instability (p < .05), whereas emotional instability was inversely correlated to differences in insulin sensitivity (p < .01). DISCUSSION: Weight reduction may lead to better somatic risk factor control. Women with more nervousness and better sociability at the beginning of a diet period may lose more weight than others.
Resumo:
BACKGROUND: Body fat changes are common in patients with HIV. For patients on protease inhibitor (PI)-based highly active antiretroviral therapy (HAART), these changes have been associated with increasing exposure to therapy in general and to stavudine in particular. Our objective is to show whether such associations are more or less likely for patients on non-nucleoside reverse transcriptase inhibitor (NNRTI)-based HAART. METHODS: We included all antiretroviral-naive patients in the Swiss HIV Cohort Study starting HAART after April 2000 who had had body weight, CD4 cell count and plasma HIV RNA measured between 6 months before and 3 months after starting HAART, and at least one assessment of body fat changes after starting HAART. At visits scheduled every 6 months, fat loss or fat gain is reported by agreement between patient and physician. We estimate the association between reported body fat changes and both time on therapy and time on stavudine, using conditional logistical regression. RESULTS: Body fat changes were reported for 85 (9%) out of 925 patients at their first assessment; a further 165 had only one assessment. Of the remaining 675 patients, body fat changes were reported for 156 patients at a rate of 13.2 changes per 100 patient-years. Body fat changes are more likely with increasing age [odds ratio (OR) 1.18 (1.00-1.38) per 10 years], with increasing BMI [OR 1.06 (1.01-1.11)] and in those with a lower baseline CD4 cell count [OR 0.91 (0.83-1.01) per 100 cells/microl]. There is only weak evidence that body fat changes are more likely with increasing time on HAART [OR 1.16 (0.93-1.46)]. After adjusting for time on HAART, fat loss is more likely with increasing stavudine use [OR 1.70 (1.34-2.15)]. There is no evidence of an association between reported fat changes and time on NNRTI therapy relative to PI therapy in those patients who used either one therapy or the other [OR 0.98 (0.56-1.63)]. CONCLUSION: Fat loss is more likely to be reported with increasing exposure to stavudine. We find no evidence of major differences between PI and NNRTI therapy in the risk of reported body fat changes.
Resumo:
Body composition changes with increasing age in men, in that lean body mass decreases whereas fat mass increases. Whether this altered body composition is related to decreasing physical activity or to the known age-associated decrease in growth hormone secretion is uncertain. To address this question, three groups of healthy men (n = 14 in each group), matched for weight, height and body mass index, were investigated using dual-energy X-ray absorptiometry, indirect calorimetry and estimate of daily growth hormone secretion [i.e. plasma insulin-like growth factor I (IGF-I-) levels]. Group 1 comprised young untrained subjects aged 31.0 +/- 2.1 years (mean +/- SEM) taking no regular physical exercise; group 2 consisted of old untrained men aged 68.6 +/- 1.2 years; and group 3 consisted of healthy old men aged 67.4 +/- 1.2 years undergoing regular physical training for more than 10 years with a training distance of at least 30 km per week. Subjects in group 3 had for the past three years taken part in the 'Grand Prix of Berne', a 16.5-km race run at a speed of 4.7 +/- 0.6 min km-1 (most recent race). Fat mass was more than 4 kg higher in old untrained men (P < 0.01, ANOVA) than in the other groups (young untrained men, 12.0 +/- 0.9 kg; old untrained men, 16.1 +/- 1.0 kg; old trained men, 11.0 +/- 0.8 kg), whereas body fat distribution (i.e. the ratio of upper to lower body fat mass) was similar between the three groups. The lean mass of old untrained men was more than 3.5 kg lower (P < 0.02, ANOVA) than in the other two groups (young untrained men, 56.4 +/- 1.0 kg; old untrained men, 52.4 +/- 1.0 kg; old trained men, 56.0 +/- 1.0 kg), mostly because of a loss of skeletal muscle mass in the arms and legs (young untrained men, 24.0 +/- 0.5 kg; old untrained men 20.8 +/- 0.5 kg; old trained men, 23.6 +/- 0.7 kg; P < 0.01, ANOVA). Resting metabolic rate per kilogram lean mass decreased with increasing age independently of physical activity (r = -0.42, P < 0.005). Fuel metabolism was determined by indirect calorimetry at rest. Protein oxidation was similar in the three groups. Old untrained men had higher (P < 0.001) carbohydrate oxidation (young untrained men, 13.2 +/- 1.0 kcal kg-1 lean mass; old untrained men, 15.2 +/- 1.3 kcal Kg-1; old trained men, 7.8 +/- 0.8 kcal kg-1), but lower (P < 0.05, ANOVA) fat oxidation (young untrained men, 10.1 +/- 1.2 kcal kg-1 lean mass; old untrained men, 6.5 +/- 1.0 kcal kg-1; old trained men, 13.7 +/- 1.0 kcal kg-1) than the other two groups. Mean plasma IGF-I level in old trained men was higher than in old untrained men (P < 0.05), but was still lower than that observed in young untrained men (P < 0.005) (young untrained men, 236 +/- 24 ng mL-1; old untrained men, 119 +/- 13 ng mL-1; old trained men, 166 +/- 14 ng mL-1). In summary, regular physical training in older men seems to prevent the changes in body composition and fuel metabolism normally associated with ageing. Whether regular physical training in formerly untrained old subjects would result in similar changes awaits further study.
Resumo:
Kidney transplant patients display decreased muscle mass and increased fat mass. Whether this altered body composition is due to glucocorticoid induced altered fuel metabolism is unclear. To answer this question, 16 kidney transplant patients were examined immediately after kidney transplantation (12 +/- 4 days, mean +/- SEM) and then during months 2, 5, 11 and 16, respectively, by whole body dual energy X-ray absorptiometry (Hologic QDR 1000W) and indirect calorimetry. Results were compared with those of 16 age, sex and body mass index matched healthy volunteers examined only once. All patients received dietary counselling with a step 1 diet of the American Heart Association and were advised to restrict their caloric intake to the resting energy expenditure plus 30%. Immediately after transplantation, lean mass of the trunk was higher by 7 +/- 1% (P < 0.05) and that of the limbs was lower by more than 10% (P < 0.01) in patients than in controls. In contrast, no difference in fat mass and resting energy expenditure could be detected between patients and controls. During the 16 months of observation, total fat mass increased in male (+4.9 +/- 1.5 kg), but not in female patients (0.1 +/- 0.8 kg). The change in fat mass observed in men was due to an increase in all subregions of the body analysed (trunk, arms+legs as well as head+neck), whereas in women only an increase in head+neck by 9 +/- 2% (P = 0.05) was detected. Body fat distribution remained unchanged in both sexes over the 16 months of observation. Lean mass of the trunk mainly decreased between days 11 and 42 (P < 0.01) and remained stable thereafter. After day 42, lean mass of arms and legs (mostly striated muscle) and head+neck progressively increased over the 14 months of observation by 1.6 +/- 0.6 kg (P < 0.05) and 0.4 +/- 0.1 kg (P < 0.01), respectively. Resting energy expenditure was similar in controls and patients at 42 days (30.0 +/- 0.7 vs. 31.0 +/- 0.9 kcal kg-1 lean mass) and did not change during the following 15 months of observation. However, composition of fuel used to sustain resting energy expenditure in the fasting state was altered in patients when compared with normal subjects, i.e. glucose oxidation was higher by more than 45% in patients (P < 0.01) during the second month after grafting, but gradually declined (P < 0.01) over the following 15 months to values similar to those observed in controls. Protein oxidation was elevated in renal transplant patients on prednisone at first measurement, a difference which tended to decline over the study period. In contrast to glucose and protein oxidation, fat oxidation was lower in patients 42 days after grafting (P < 0.01), but increased by more than 100% reaching values similar to those observed in controls after 16 months of study. Mean daily dose of prednisone per kg body weight correlated with the three components of fuel oxidation (r > 0.93, P < 0.01), i.e. protein, glucose and fat oxidation. These results indicate that in prednisone treated renal transplant patients fuel metabolism is regulated in a dose-dependent manner. Moreover, dietary measures, such as caloric and fat intake restriction as well as increase of protein intake, can prevent muscle wasting as well as part of the usually observed fat accumulation. Furthermore, the concept of preferential upper body fat accumulation as consequence of prednisone therapy in renal transplant patients has to be revised.
Resumo:
It is unclear whether regular exercise alone (no caloric restriction) is a useful strategy to reduce adiposity and obesity-related metabolic risk factors in obese girls. We examined the effects of aerobic (AE) vs. resistance exercise (RE) alone on visceral adipose tissue (VAT), intrahepatic lipid, and insulin sensitivity in obese girls. Forty-four obese adolescent girls (BMI ≥95th percentile, 12-18 yr) with abdominal obesity (waist circumference 106.5 ± 11.1 cm) were randomized to 3 mo of 180 min/wk AE (n = 16) or RE (n = 16) or a nonexercising control group (n = 12). Total fat and VAT were assessed by MRI and intrahepatic lipid by proton magnetic resonance spectroscopy. Intermuscular AT (IMAT) was measured by CT. Insulin sensitivity was evaluated by a 3-h hyperinsulinemic (80 mU·m(2)·min(-1)) euglycemic clamp. Compared with controls (0.13 ± 1.10 kg), body weight did not change (P > 0.1) in the AE (-1.31 ± 1.43 kg) and RE (-0.31 ± 1.38 kg) groups. Despite the absence of weight loss, total body fat (%) and IMAT decreased (P < 0.05) in both exercise groups compared with control. Compared with control, significant (P < 0.05) reductions in VAT (Δ-15.68 ± 7.64 cm(2)) and intrahepatic lipid (Δ-1.70 ± 0.74%) and improvement in insulin sensitivity (Δ0.92 ± 0.27 mg·kg(-1)·min(-1) per μU/ml) were observed in the AE group but not the RE group. Improvements in insulin sensitivity in the AE group were associated with the reductions in total AT mass (r = -0.65, P = 0.02). In obese adolescent girls, AE but not RE is effective in reducing liver fat and visceral adiposity and improving insulin sensitivity independent of weight loss or calorie restriction.
Resumo:
Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.
Resumo:
Obesity is a major public health issue and an important contributor to the global burden of chronic disease and disability. Studies indicate that fish and omega-3 polyunsaturated fatty acids (n3-PUFA) supplements may help prevent cardiovascular and metabolic diseases. However, the effect of fish oil on body composition is still uncertain, so we performed a systematic review of randomized controlled trials and the first meta-analysis on the association between fish or fish oil intake and body composition measures. We found evidence that participants taking fish or fish oil lost 0.59 kg more body weight than controls (95% confidence interval [CI]: -0.96 to -0.21). Treatment groups lost 0.24 kg m(-2) (body mass index) more than controls (-0.40 to -0.08), and 0.49 % more body fat than controls (-0.97 to -0.01). Fish or fish oil reduced waist circumference by 0.81 cm (-1.34 to -0.28) compared with control. There was no difference for fat mass and lean body mass. Further research is needed to confirm or refute our findings and to reveal possible mechanisms by which n3-PUFAs might reduce weight.
Resumo:
Reprogramming of gene expression contributes to structural and functional adaptation of muscle tissue in response to altered use. The aim of this study was to investigate mechanisms for observed improvements in leg extension strength, gain in relative thigh muscle mass and loss of body and thigh fat content in response to eccentric and conventional strength training in elderly men (n = 14) and women (n = 14; average age of the men and women: 80.1 ± 3.7 years) by means of structural and molecular analyses. Biopsies were collected from m. vastus lateralis in the resting state before and after 12 weeks of training with two weekly resistance exercise sessions (RET) or eccentric ergometer sessions (EET). Gene expression was analyzed using custom-designed low-density PCR arrays. Muscle ultrastructure was evaluated using EM morphometry. Gain in thigh muscle mass was paralleled by an increase in muscle fiber cross-sectional area (hypertrophy) with RET but not with EET, where muscle growth is likely occurring by the addition of sarcomeres in series or by hyperplasia. The expression of transcripts encoding factors involved in muscle growth, repair and remodeling (e.g., IGF-1, HGF, MYOG, MYH3) was increased to a larger extent after EET than RET. MicroRNA 1 expression was decreased independent of the training modality, and was paralleled by an increased expression of IGF-1 representing a potential target. IGF-1 is a potent promoter of muscle growth, and its regulation by microRNA 1 may have contributed to the gain of muscle mass observed in our subjects. EET depressed genes encoding mitochondrial and metabolic transcripts. The changes of several metabolic and mitochondrial transcripts correlated significantly with changes in mitochondrial volume density. Intramyocellular lipid content was decreased after EET concomitantly with total body fat. Changes in intramyocellular lipid content correlated with changes in body fat content with both RET and EET. In the elderly, RET and EET lead to distinct molecular and structural adaptations which might contribute to the observed small quantitative differences in functional tests and body composition parameters. EET seems to be particularly convenient for the elderly with regard to improvements in body composition and strength but at the expense of reducing muscular oxidative capacity.
Resumo:
Adrenocortical tumors are rare in children and present with variable signs depending on the type of hormone excess. We herein describe the unusual presentation of a child with adrenocortical tumor and introduce the concept of in vitro chemosensitivity testing. CASE REPORT: A 10.5-year-old girl presented with hypertrichosis/hirsutism and weight loss. The weight loss and behavioral problems, associated with halted puberty and growth, led to the initial diagnosis of anorexia nervosa. However, subsequent weight gain but persisting arrest in growth and puberty and the appearance of central fat distribution prompted further evaluation. RESULTS AND FOLLOW-UP: 24h-urine free cortisol was elevated. Morning plasma ACTH was undetectable, while cortisol was elevated and circadian rhythmicity was absent. Thus a hormonally active adrenal cortical tumor (ACT) was suspected. On magnetic resonance imaging (MRI) a unilateral, encapsulated tumor was found which was subsequently removed surgically. Tissue was investigated histologically and for chemosensitivity in primary cell cultures. Although there were some risk factors for malignancy, the tumor was found to be a typical adenoma. Despite this histology, tumor cells survived in culture and were sensitive to cisplatin in combination with gemcitabine or paclitaxel. At surgery, the patient was started on hydrocortisone replacement which was unsuccessfully tapered over 3 months. Full recovery of the hypothalamus-pituitary-adrenal axis occurred only after 3 years. CONCLUSIONS: The diagnosis of a hormonally active adrenocortical tumor is often delayed because of atypical presentation. Cortisol replacement following unilateral tumor excision is mandatory and may be required for months or years. Individualized chemosensitivity studies carried out on primary cultures established from the tumor tissue itself may provide a tool in evaluating the effectiveness of chemotherapeutic drugs in the event that the adrenocortical tumor may prove to be carcinoma.
Resumo:
Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.
Resumo:
To assess the associations between obesity markers (BMI, waist circumference and %body fat) and inflammatory markers (interleukin-1β (IL-1β); interleukin-6 (IL-6); tumor necrosis factor-α (TNF-α) and high-sensitivity C-reactive protein (hs-CRP)).
Resumo:
A hypercoagulable state is a potential mechanism linking elevated blood pressure (BP), adiposity and a sedentary lifestyle to development of coronary heart disease (CHD). We examined relationships among aerobic fitness and adiposity in 76 sedentary subjects with elevated BP. Blood levels of plasminogen activator inhibitor-1 (PAI-1), D-dimer, von Willebrand factor (vWF) and thrombomodulin were assessed as biomarkers of coagulation. In individuals with elevated BP, percent body fat and fitness were associated with biomarkers indicative of a hypercoagulable state, even after demographic and metabolic factors were considered. D-dimer was positively associated with percent body fat (beta=0.37, p=0.003). PAI-1 was higher in men than in women (beta=-0.31, p=0.015) and associated with lower VO2peak (beta=-0.35, p=0.024). Thrombomodulin was positively associated with VO2peak (beta=0.56, p< 0.01). vWF was not significantly associated with fitness or adiposity. Our results emphasise that both percent body fat and physical fitness are important in the maintenance of haemostatic balance.
Resumo:
Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids.