30 resultados para anchorage
Resumo:
AIM: The purpose of this study was to systematically review the literature on the survival rates of palatal implants, Onplants((R)), miniplates and mini screws. MATERIAL AND METHODS: An electronic MEDLINE search supplemented by manual searching was conducted to identify randomized clinical trials, prospective and retrospective cohort studies on palatal implants, Onplants((R)), miniplates and miniscrews with a mean follow-up time of at least 12 weeks and of at least 10 units per modality having been examined clinically at a follow-up visit. Assessment of studies and data abstraction was performed independently by two reviewers. Reported failures of used devices were analyzed using random-effects Poisson regression models to obtain summary estimates and 95% confidence intervals (CI) of failure and survival proportions. RESULTS: The search up to January 2009 provided 390 titles and 71 abstracts with full-text analysis of 34 articles, yielding 27 studies that met the inclusion criteria. In meta-analysis, the failure rate for Onplants((R)) was 17.2% (95% CI: 5.9-35.8%), 10.5% for palatal implants (95% CI: 6.1-18.1%), 16.4% for miniscrews (95% CI: 13.4-20.1%) and 7.3% for miniplates (95% CI: 5.4-9.9%). Miniplates and palatal implants, representing torque-resisting temporary anchorage devices (TADs), when grouped together, showed a 1.92-fold (95% CI: 1.06-2.78) lower clinical failure rate than miniscrews. CONCLUSION: Based on the available evidence in the literature, palatal implants and miniplates showed comparable survival rates of >or=90% over a period of at least 12 weeks, and yielded superior survival than miniscrews. Palatal implants and miniplates for temporary anchorage provide reliable absolute orthodontic anchorage. If the intended orthodontic treatment would require multiple miniscrew placement to provide adequate anchorage, the reliability of such systems is questionable. For patients who are undergoing extensive orthodontic treatment, force vectors may need to be varied or the roots of the teeth to be moved may need to slide past the anchors. In this context, palatal implants or miniplates should be the TADs of choice.
Resumo:
INTRODUCTION The purpose of this study was to examine the overall success of miniscrews inserted in the paramedian palatal region for support of various appliances during orthodontic treatment. METHODS The patients received 1 or 2 miniscrews in the paramedian anterior palate of 8.0-mm length and 1.6-mm diameter placed during orthodontic treatment by the same experienced orthodontist. RESULTS In total, 196 patients (121 girls, 75 boys; median age, 11.7; interquartile range, 3.7) who received 384 miniscrews were evaluated. Two hundred four miniscrews were used with rapid palatal expansion appliances, 136 with appliances for distalization of posterior teeth, and 44 with other appliances, such as transpalatal arches for tooth stabilization. The overall survival of the miniscrews was excellent (97.9%) in the cases examined. Cox regression analysis showed no difference in the overall survival rates of miniscrews loaded with different appliances for sex (hazard ratio, 0.95; 95% confidence interval, 0.71-1.27; P = 0.73) after adjusting for appliance and age. CONCLUSIONS This study shows that miniscrews placed in the paramedian anterior palate for supporting various orthodontic appliances have excellent survival.
Resumo:
BACKGROUND The aim of the survey was to obtain information on the treatment plan preferences, mechanics and characteristics of temporary anchorage device (TAD) application using a single case presented to orthodontists in Switzerland. METHODS A structured questionnaire to be completed by all study participants with case-specific (treatment plan including mechanics and TAD usage) and general questions (general fixed appliance and TAD usage as well as professional, educational and demographic questions) together with an orthodontic borderline case was utilised. The case was a female adult with dental Class II/2, deep bite and maxillary anterior crowing, who had been treated in childhood with extraction of four premolars and fixed appliance followed by wisdom tooth extraction. RESULTS The response rate was 24.4% (108 out of 443). The majority (96.3%, 104) proposed comprehensive treatment, while 3.7% (4) planned only alignment of maxillary teeth. 8.3% (9) included a surgical approach in their treatment plan. An additional 0.9% (1) combined the surgical approach with Class II mechanics. 75.1% (81) decided on distalization on the maxilla using TADs, 7.4% (8) planned various types of Class II appliances and 3.7% (4) combined distalization using TADs or headgear with Class II appliances and surgery. Palatal implants were the most popular choice (70.6%, 60), followed by mini-screws (22.4%, 19) and mini-plates on the infrazygomatic crests (7.0%, 6). The preferred site of TAD insertion showed more variation in sagittal than in transversal dimension, and the median size of mini-screws used was 10.0-mm long (interquartile range (IQR) 2.3 mm) and 2.0-mm wide (IQR 0.3 mm). CONCLUSIONS Distalization against palatal implants and then distalization against mini-screws were the most popular treatment plans. Preferred site for TAD insertion varied depending on type and size but varied more widely in the sagittal than in the transversal dimension.
Resumo:
Hydrogels are considered promising for disc regeneration strategies. However, it is currently unknown whether the destruction of the natural interface between nucleus and surrounding structures caused by nucleotomy and an inadequate annulus closure diminishes the mechanical competence of the disc. This in vitro study aimed to clarify these mechanisms and to evaluate whether hydrogels are able to restore the biomechanical behaviour of the disc. Nucleus pressure in an ovine intervertebral disc was measured in vivo during day and night and adapted to an in vitro axial compressive diurnal (15min) and night (30min) load. Effects of different defects on disc height and nucleus pressure were subsequently measured in vitro using 30 ovine motion segments. Following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue; and two different hydrogels repaired by suture and glue. The intradiscal pressure in vivo was 0.75MPa during day and 0.5MPa during night corresponding to an in vitro axial compressive force of 130 and 58N, respectively. The compression test showed that neither the implantation of hydrogels nor the re-implantation of the natural nucleus, assumed as being the ideal implant, was able to restore the mechanical functionality of an intact disc. Results indicate the importance of the natural anchorage of the nucleus with its surrounding structures and the relevance of an appropriate annulus closure. Therefore, hydrogels that are able to mimic the mechanical behaviour of the native nucleus may fail in restoring the mechanical behaviour of the disc.
Resumo:
Brain edema is the main cause of death from brain infarction. The polarized expression of the water channel protein aquaporin-4 (AQP4) on astroglial endfeet surrounding brain microvessels suggests a role in brain water balance. Loss of astrocyte foot process anchoring to the basement membrane (BM) accompanied by the loss of polarized localization of AQP4 to astrocytic endfeet has been shown to be associated with vasogenic/extracellular edema in neuroinflammation. Here, we asked if loss of astrocyte polarity is also observed in cytotoxic/intracellular edema following focal brain ischemia after transient middle cerebral artery occlusion (tMCAO). Upon mild focal brain ischemia, we observed diminished immunostaining for the BM components laminin α4, laminin α2, and the proteoglycan agrin, in the core of the lesion, but not in BMs in the surrounding penumbra. Staining for the astrocyte endfoot anchorage protein β-dystroglycan (DG) was dramatically reduced in both the lesion core and the penumbra, and AQP4 and Kir4.1 showed a loss of polarized localization to astrocytic endfeet. Interestingly, we observed that mice deficient for agrin expression in the brain lack polarized localization of β-DG and AQP4 at astrocytic endfeet and do not develop early cytotoxic/intracellular edema following tMCAO. Taken together, these data indicate that the binding of DG to agrin embedded in the subjacent BM promotes polarized localization of AQP4 to astrocyte endfeet. Reduced DG protein levels and redistribution of AQP4 as observed upon tMCAO might therefore counteract early edema formation and reflect a beneficial mechanism operating in the brain to minimize damage upon ischemia.
Resumo:
The functional capacity of osseointegrated dental implants to bear load is largely dependent on the quality of the interface between the bone and implant. Sandblasted and acid-etched (SLA) surfaces have been previously shown to enhance bone apposition. In this study, the SLA has been compared with a chemically modified SLA (modSLA) surface. The increased wettability of the modSLA surface in a protein solution was verified by dynamic contact angle analysis. Using a well-established animal model with a split-mouth experimental design, implant removal torque testing was performed to determine the biomechanical properties of the bone-implant interface. All implants had an identical cylindrical shape with a standard thread configuration. Removal torque testing was performed after 2, 4, and 8 weeks of bone healing (n = 9 animals per healing period, three implants per surface type per animal) to evaluate the interfacial shear strength of each surface type. Results showed that the modSLA surface was more effective in enhancing the interfacial shear strength of implants in comparison with the conventional SLA surface during early stages of bone healing. Removal torque values of the modSLA-surfaced implants were 8-21% higher than those of the SLA implants (p = 0.003). The mean removal torque values for the modSLA implants were 1.485 N m at 2 weeks, 1.709 N m at 4 weeks, and 1.345 N m at 8 weeks; and correspondingly, 1.231 N m, 1.585 N m, and 1.143 N m for the SLA implants. The bone-implant interfacial stiffness calculated from the torque-rotation curve was on average 9-14% higher for the modSLA implants when compared with the SLA implants (p = 0.038). It can be concluded that the modSLA surface achieves a better bone anchorage during early stages of bone healing than the SLA surface; chemical modification of the standard SLA surface likely enhances bone apposition and this has a beneficial effect on the interfacial shear strength.
Resumo:
INTRODUCTION: Osteoporosis is not only responsible for an increased number of metaphyseal and spinal fractures but it also complicates their treatment. To prevent the initial loosening, we developed a new implant with an enlarged implant/bone interface based on the concept of perforated, hollow cylinders. We evaluated whether osseointegration of a hollow cylinder based implant takes place in normal or osteoporotic bone of sheep under functional loading conditions during anterior stabilization of the lumbar spine. MATERIALS AND METHODS: Osseointegration of the cylinders and status of the fused segments (ventral corpectomy, replacement with iliac strut, and fixation with testing implant) were investigated in six osteoporotic (age 6.9 +/- 0.8 years, mean body weight 61.1 +/- 5.2 kg) and seven control sheep (age 6.1 +/- 0.2 years, mean body weight 64.9 +/- 5.7 kg). Osteoporosis was introduced using a combination protocol of ovariectomy, high-dose prednisone, calcium and phosphor reduced diet and movement restriction. Osseointegration was quantified using fluorescence and conventional histology; fusion status was determined using biomechanical testing of the stabilized segment in a six-degree-of-freedom loading device as well as with radiological and histological staging. RESULTS: Intact bone trabeculae were found in 70% of all perforations without differences between the two groups (P = 0.26). Inside the cylinders, bone volume/total volume was significantly higher than in the control vertebra (50 +/- 16 vs. 28 +/- 13%) of the same animal (P<0.01), but significantly less (P<0.01) than in the near surrounding (60 +/- 21%). After biomechanical testing as described in Sect. "Materials and methods", seven spines (three healthy and four osteoporotic) were classified as completely fused and six (four healthy and two osteoporotic) as not fused after a 4-month observation time. All endplates were bridged with intact trabeculae in the histological slices. CONCLUSIONS: The high number of perforations, filled with intact trabeculae, indicates an adequate fixation; bridging trabeculae between adjacent endplates and tricortical iliac struts in all vertebrae indicates that the anchorage is adequate to promote fusion in this animal model, even in the osteoporotic sheep.
Resumo:
BACKGROUND: There is evidence for the superiority of two-implant overdentures over complete dentures in the mandible. Various anchorage devices were used to provide stability to overdentures. The aim of the present study was to compare two designs of a rigid bar connecting two mandibular implants. MATERIALS AND METHODS: Completely edentulous patients received a new denture in the maxilla and an implant-supported overdenture in the mandible. They were randomly allocated to two groups (A or B) with regard to the bar design. A standard U-shaped bar (Dolder bar) was used connecting the two implants in a straight line. For comparison, precision attachments were soldered distal to the bar copings. Group A started the study with the standard bar (S-bar), while group B started with the attachment-bar (A-bar). After 3 months, they had to answer a questionnaire (visual analogue scale [VAS]); then the bar design was changed in both groups. After a period of another 3 months, the patients had to answer the same questions; then they had the choice to keep their preferred bar. Now the study period was extended to another year of observation, and the patients answered again the same questionnaire. In vivo force measurements were carried out with both bar types at the end of the test periods. The prosthetic maintenance service carried out during the 6-month period was recorded for both bar types in both groups. Statistical analysis as performed with the SPSS statistical package (SPSS Inc., Chicago, IL, USA). RESULTS: Satisfaction was high in both groups. Group B, who had entered the study with the attachment bar, gave slightly better ratings to this type for four items, while in group A, no differences were found. At the end of the 6-month comparison period, all but one patient wished to continue to wear the attachment bar. Prosthetic service was equal in groups A and B, but the total number of interventions is significantly higher in the attachment bar. Force patterns of maximum biting were similar in both bar designs, but exhibited significantly higher axial forces in the attachment bar. CONCLUSIONS: Both bar designs provide good retention and functional comfort. High stability appears to be an important factor for the patients' satisfaction and oral comfort. Rigid retention results in a higher force impact and appears to evoke the need for the retightening of occlusal screws, resulting in more maintenance service.
Resumo:
AIM: During each oestrous cycle, the mammary gland is subject to changes in ovarian hormone levels. It responds with limited proliferation, differentiation and regression. To understand the processes resulting in these changes, particularly the regulation of cell death, we examined protein levels in mammary epithelium during the oestrous cycle of the Sprague-Dawley rat. METHODS: Studies of serum hormone levels, vaginal smears, uterine weight and morphology, mammary gland morphology, proliferation and apoptotic indices, and protein levels during the stages of the Sprague-Dawley rat oestrous cycle were used to examine the response of mammary epithelium to the oestrous cycle. RESULTS: Proliferation of mammary epithelium was greater in diestrus and proestrus, while apoptosis was increased in metestrus and diestrus. Growth factor-, hormone- and anchorage-mediated cell survival signalling, indicated by activation of Stat5A, FAK and Akt 1 and expression of anti-apoptotic Bcl-2 family members, was greater in proestrus and reduced in metestrus. In contrast, the levels of pro-apoptotic Bcl-2 family members and proteins associated with apoptosis in mammary epithelium (TGFbeta3, pStat3) were increased during metestrus and diestrus. CONCLUSION: Decreases in growth factor, hormone and cell attachment survival signals corresponded with increased apoptosis during the second half of the oestrous cycle. The protein levels detected during oestrus suggest parallels to apoptosis in mammary involution.
Resumo:
PURPOSE: The aim of this study was to analyze prosthetic maintenance in partially edentulous patients with removable prostheses supported by teeth and strategic implants. MATERIALS AND METHODS: Sixty patients with removable partial prostheses and combined tooth-implant support were identified within the time period from 1998 to 2006. One group consisted of 42 patients (planned group) with a reduced residual dentition and in need of removable partial dentures (RPDs) or overdentures in the maxilla and/or mandible. They were admitted consecutively for treatment. Due to missing teeth in strategic important positions, one or two implants were placed to improve symmetrical denture support and retention. The majority of residual teeth exhibited an impaired structural integrity and therefore were provided with root copings for denture retention. A few vital teeth were used for telescopic crowns. The anchorage system for the strategic implants was selected accordingly. A second group of 18 patients (repair group) wearing RPDs with the loss of one abutment tooth due to biologic or mechanical failure was identified. These abutment teeth were replaced by 21 implants, and patients continued to wear their original prostheses. The observation time for planned and repair groups was 12 months to 8 years. All patients followed a regular maintenance schedule. Technical or biologic complications with supporting teeth or implants and prosthetic service were registered regularly. RESULTS: Three maxillary implants were lost after loading and three roots with copings had to be removed. Biologic problems included caries and periodontal/peri-implant infection with a significantly higher incidence in the repair group (P < .05). Technical complications with the dentures were rather frequent in both groups, mostly related to the anchorage system (matrices) of root copings and implants. Maintenance and complications were observed more frequently in the first year after delivery of the denture than in the following 3 years (P < .05). No denture had to be remade. CONCLUSIONS: The placement of a few implants allows for maintaining a compromised residual dentition for support of RPDs. The combination of root and implant support facilitates treatment planning and enhances designing the removable denture. It also proves to be a practical rescue method. Technical problems with the anchorage system were frequent, particularly in the first year after delivery of the dentures.
Resumo:
Pedicle hooks which are used as an anchorage for posterior spinal instrumentation may be subjected to considerable three-dimensional forces. In order to achieve stronger attachment to the implantation site, hooks using screws for additional fixation have been developed. The failure loads and mechanisms of three such devices have been experimentally determined on human thoracic vertebrae: the Universal Spine System (USS) pedicle hook with one screw, a prototype pedicle hook with two screws and the Cotrel-Dubousset (CD) pedicle hook with screw. The USS hooks use 3.2-mm self-tapping fixation screws which pass into the pedicle, whereas the CD hook is stabilised with a 3-mm set screw pressing against the superior part of the facet joint. A clinically established 5-mm pedicle screw was tested for comparison. A matched pair experimental design was implemented to evaluate these implants in constrained (series I) and rotationally unconstrained (series II) posterior pull-out tests. In the constrained tests the pedicle screw was the strongest implant, with an average pull-out force of 1650 N (SD 623 N). The prototype hook was comparable, with an average failure load of 1530 N (SD 414 N). The average pull-out force of the USS hook with one screw was 910 N (SD 243 N), not significantly different to the CD hook's average failure load of 740 N (SD 189 N). The result of the unconstrained tests were similar, with the prototype hook being the strongest device (average 1617 N, SD 652 N). However, in this series the difference in failure load between the USS hook with one screw and the CD hook was significant. Average failure loads of 792 N (SD 184 N) for the USS hook and 464 N (SD 279 N) for the CD hook were measured. A pedicular fracture in the plane of the fixation screw was the most common failure mode for USS hooks.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.
Resumo:
BACKGROUND CONTEXT A new device, DensiProbe, has been developed to provide surgeons with intraoperative information about bone strength by measuring the peak breakaway torque. In cases of low bone quality, the treatment can be adapted to the patient's condition, for example, by improving screw-anchorage with augmentation techniques. PURPOSE The objective of this study was to investigate the feasibility of DensiProbe Spine in patients undergoing transpedicular fixation. STUDY DESIGN Prospective feasibility study on consecutive patients. PATIENT SAMPLE Fourteen women and 16 men were included in this study. OUTCOME MEASURES Local and general bone quality. METHODS These consecutive patients scheduled for transpedicular fixation were evaluated for bone mineral density (BMD), which was measured globally by dual-energy X-ray absorptiometry and locally via biopsies using quantitative microcomputed tomography. The breakaway torque force within the vertebral body was assessed intraoperatively via the transpedicular approach with the DensiProbe Spine. The results were correlated with the areal BMD at the lumbar spine and the local volumetric BMD (vBMD) and a subjective impression of bone strength. The feasibility of the method was evaluated, and the clinical and radiological performance was evaluated over a 1-year follow-up. This study was funded by an AO Spine research grant; DensiProbe was developed at the AO Research Institute Davos, Switzerland; the AO Foundation is owner of the intellectual property rights. RESULTS In 30 patients, 69 vertebral levels were examined. The breakaway torque consistently correlated with an experienced surgeon's quantified impression of resistance as well as with vBMD of the same vertebra. Beyond a marginal prolongation of surgery time, no adverse events related to the usage of the device were observed. CONCLUSIONS The intraoperative transpedicular measurement of the peak breakaway torque was technically feasible, safe, and reliably predictive of local vBMD during dorsal spinal instrumentations in a clinical setting. Larger studies are needed to define specific thresholds that indicate a need for the augmentation or instrumentation of additional levels.
Resumo:
BACKGROUND The treatment of proximal humerus fractures in patients with poor bone quality remains a challenge in trauma surgery. Augmentation with polymethylmethacrylate (PMMA) cement is a possible method to strengthen the implant anchorage in osteoporotic bone and to avoid loss of reduction and reduce the cut-out risk. The polymerisation of PMMA during cement setting leads, however, to an exothermic reaction and the development of supraphysiological temperatures may harm the bone and cartilage. This study addresses the issue of heat development during augmentation of subchondrally placed proximal humerus plate screws with PMMA and the possible risk of bone and cartilage necrosis and apoptosis. METHODS Seven fresh frozen humeri from geriatric female donors were instrumented with the proximal humerus interlocking system (PHILOS) plate and placed in a 37°C water bath. Thereafter, four proximal perforated screws were augmented with 0.5 ml PMMA each. During augmentation, the temperatures in the subchondral bone and on the articular surface were recorded with K-type thermocouples. The measured temperatures were compared to threshold values for necrosis and apoptosis of bone and cartilage reported in the literature. RESULTS The heat development was highest around the augmented tips of the perforated screws and diminished with growing distance from the cement cloud. The highest temperature recorded in the subchondral bone reached 43.5°C and the longest exposure time above 42°C was 86s. The highest temperature measured on the articular surface amounted to 38.6°C and the longest exposure time above 38°C was 5 min and 32s. CONCLUSION The study shows that augmentation of the proximal screws of the PHILOS plate with PMMA leads to a locally limited development of supraphysiological temperatures in the cement cloud and closely around it. The critical threshold values for necrosis and apoptosis of cartilage and subchondral bone reported in the literature, however, are not reached. In order to avoid cement extravasation, special care should be taken in detecting perforations or intra-articular cracks in the humeral head.