43 resultados para alpha 1 microglobulin
Resumo:
BACKGROUND: Natural xenoreactive antibodies (Abs) directed against the Bdi-epitope (Gal alpha 1-3Gal beta) on the cells of non-primate mammals take part in hyperacute rejection of xenotransplanted organs. We found that some Abs, which were one-step affinity purified on Bdi-Sepharose, cross-reacted with the disaccharide Gal alpha 1-4GlcNAc beta. The epitope Gal alpha 1-4GlcNAc has not been identified on mammals or bacterial polysaccharides yet. METHODS: To isolate the antibodies of the corresponding specificity the disaccharide was immobilized on Sepharose and antibodies were affinity purified from pooled serum of blood group O individuals. RESULTS: These one-step purified Abs cross-reacted with Bdi, but after a prior absorption step on Bdi-Sepharose no cross-reactivity with Bdi was observed any longer. Surprisingly, the quantity of anti-Gal alpha 1-4GlcNAc isolated from the same serum pool, 4-7 microg/ml, was equal to that of anti-Bdi or more. Independently of ABO blood groups all the tested healthy donors had anti-Gal alpha 1-4GlcNAc Abs at a similar level. Monospecific anti-Gal alpha 1-4GlcNAc Abs were not cytotoxic towards porcine cells. CONCLUSIONS: 1. The actual concentration of monospecific, xenoreactive Gal alpha 1-3Gal beta Abs in blood may be considerably lower than the value referred to in the literature for 'anti-alpha Gal' or 'anti-Galili' antibodies. 2. Anti-Gal alpha 1-4GlcNAc Abs seem not to be important for xenotransplantation.
Resumo:
The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.
Resumo:
Wound healing disturbance is a common complication following surgery, but the underlying cause sometimes remains elusive. A 50-year-old Caucasian male developed an initially misunderstood severe wound healing disturbance following colon and abdominal wall surgery. An untreated alpha-1-antitrypsin (AAT) deficiency in the patient's medical history, known since 20 years and clinically apparent as a mild to moderate chronic obstructive pulmonary disease, was eventually found to be at its origin. Further clinical work-up showed AAT serum levels below 30% of the lower reference value; phenotype testing showed a ZZ phenotype and a biopsy taken from the wound area showed the characteristic, disease-related histological pattern of necrotising panniculitits. Augmentation therapy with plasma AAT was initiated and within a few weeks, rapid and adequate would healing was observed. AAT deficiency is an uncommon but clinically significant, possible cause of wound healing disturbances. An augmentation therapy ought to be considered in affected patients during the perioperative period.
Resumo:
Zolpidem is a positive allosteric modulator of GABA(A) receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABA(A) receptors containing the alpha(1) subunit, it has a lower affinity to GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits and has a very weak efficacy at receptors containing the alpha(5) subunit. Here, we show that replacing histidine in position 105 in the alpha(5) subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the alpha(5) subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to alpha(5)H105 in alpha(1), alpha(2), and alpha(3) are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines alpha(1)H101, alpha(2)H101, and alpha(3)H126 by arginine, as naturally present in alpha(4) and alpha(6), leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in alpha(5) containing receptors also for the action of zolpidem.
Resumo:
Interleukin-1 beta is a potent mediator of the acute-phase response. However, the effects of interleukin-1 beta administration on the topic in vivo production of acute-phase proteins and albumin are so far not well understood. Overnight fasted rats were subcutaneously injected with 0.2 mL 0.9% NaCl (control group) or 6.25 micrograms recombinant human interleukin-1 beta, and rectal temperature was measured at intervals up to 48 h. Livers were perfused-fixed in vivo prior to injection (base-line), and at 9, 24, and 48 h following the interleukin-1 beta injection. Fibrinogen, orosomucoid (alpha 1-acid glycoprotein) and albumin were immunostained using a streptavidin-biotin-immunoperoxidase technique. Rectal temperature peaked 5 h after the single interleukin-1 beta injection, and fell gradually to base-line values by 24 h. Prior to injection only a few hepatocytes, randomly scattered throughout the liver lobule, stained positive for fibrinogen and orosomucoid. In contrast, all hepatocytes stained uniformly positive for fibrinogen and orosomucoid 9 h after interleukin-1 beta injection, whereas at 24 h a predominant centrilobular staining pattern occurred. Due to fasting, albumin positive hepatocytes were already reduced at base-line in both groups. Interleukin-1 beta induced a further significant loss of albumin positive cells in the periportal zone (35 +/- 21%) at 9 h when compared with controls (58 +/- 11%, p = 0.037). In conclusion, subcutaneous interleukin-1 beta (probably by stimulation of interleukin-6) strongly induces fibrinogen and orosomucoid expression in rat liver, and suppresses immunohistochemically stainable albumin in a heterogenous way, mainly in the periportal zone.
Resumo:
BACKGROUND: Xenoreactive human natural antibodies (NAb) are predominantly directed against galactose-alpha(1,3)galactose (Gal). Binding of immunoglobulin (Ig) G and IgM NAb activates porcine endothelial cells (pEC) and triggers complement lysis responsible for hyperacute xenograft rejection. In vitro, IgG NAb induce human natural killer (NK) cell-mediated lysis of pEC by antibody-dependent cell-mediated cytotoxicity (ADCC). The present study examined the levels of anti-porcine NAb in a large number of individuals and addressed the functional role of non-Gal anti-porcine NAb. METHODS: Sera from 120 healthy human blood donors were analyzed for the presence of anti-porcine NAb by flow cytometry using porcine red blood cells (pRBC), lymphoblastoid cells (pLCL), and pEC derived from control or Gal-deficient pigs. Xenogeneic complement lysis was measured by flow cytometry using human serum and rabbit complement. ADCC was analyzed by chromium-release assays using human serum and freshly isolated NK cells. RESULTS: Human IgM binding to pRBC was found in 93% and IgG binding in 86% of all samples. Non-Gal NAb comprised 13% of total IgM and 36% of total IgG binding to pEC. NAb/complement-induced lysis and ADCC of Gal-deficient compared to Gal-positive pEC were 21% and 29%, respectively. The majority of anti-Gal and non-Gal IgG NAb were of the IgG2 subclass. CONCLUSIONS: The generation of Gal-deficient pigs has overcome hyperacute anti-Gal-mediated xenograft rejection in nonhuman primates. Non-Gal anti-porcine NAb represent a potentially relevant immunological hurdle in a subgroup of individuals by inducing endothelial damage in xenografts.
Resumo:
The globin gene family of Xenopus laevis comprises pairs of closely related genes that are arranged in two clusters, each pair of genes being co-ordinately and stage-specifically expressed. To get information on putative regulatory elements, we compared the DNA sequences and the chromatin conformation 5' to the co-ordinately expressed adult alpha-globin genes. Sequence analysis revealed a relatively conserved region from the cap site up to position -289, and further upstream seven distinct boxes of homology, separated by more diverged sequences or deletions/insertions. The homology boxes comprise 22 to 194 base-pairs showing 78 to 95% homology. Analysis of chromatin conformation showed that DNase I preferentially cuts the upstream region of both genes at similar positions, 5' to the T-A-T-A and the C-C-A-A-T boxes, only in chromatin of adult erythroblasts and erythrocytes, where adult globin genes are expressed, but not in chromatin of adult liver cells or larval erythrocytes, where these genes are silent. This suggests that cell- and stage-specific activation of these genes coincides with specific changes in chromatin conformation within the proximal upstream region. No difference was found in the nucleotide sequence within the DNase I hypersensitive region proximal to the adult alpha 1-globin gene in DNA from embryonic cells, in which this gene is inactive, and adult erythrocytes, expressing this gene.
Resumo:
The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA.
Resumo:
delta subunit-containing gamma-aminobutyric acid, type A (GABA(A))receptors are expressed extrasynaptically and mediate tonic inhibition. In cerebellar granule cells, they often form receptors together with alpha(1) and/or alpha(6) subunits. We were interested in determining the architecture of receptors containing both subunits. We predefined the subunit arrangement of several different GABA(A) receptor pentamers by concatenation. These receptors composed of alpha(1), alpha(6), beta(3), and delta subunits were expressed in Xenopus oocytes. Currents elicited in response to GABA were determined in the presence and absence of 3alpha,21-dihydroxy-5alpha-pregnan-20-one (THDOC) or ethanol, or currents were elicited by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP). Several subunit configurations formed active channels. We therefore conclude that delta can assume multiple positions in a receptor pentamer made up of alpha(1), alpha(6), beta(3), and delta subunits. The different receptors differ in their functional properties. Functional expression of one receptor type was only evident in the combined presence of the neurosteroid THDOC with the channel agonist GABA. Most, but not all, receptors active with GABA/THDOC responded to THIP. None of the receptors was modulated by ethanol concentrations up to 30 mm. Several observations point to a preferred position of delta subunits between two alpha subunits in alpha(1)alpha(6)beta(3)delta receptors. This property is shared by alpha(1)beta(3)delta and alpha(6)beta(3)delta receptors, but there are differences in the additionally expressed isoforms.
Resumo:
Ligands of the benzodiazepine binding site of the GABA(A) receptor come in three flavors: positive allosteric modulators, negative allosteric modulators and antagonists all of which can bind with high affinity. The GABA(A) receptor is a pentameric protein which forms a chloride selective ion channel and ligands of the benzodiazepine binding site stabilize three different conformations of this protein. Classical benzodiazepines exert a positive allosteric effect by increasing the apparent affinity of channel opening by the agonist γ-aminobutyric acid (GABA). We concentrate here on the major adult isoform, the α(1)β(2)γ(2) GABA(A) receptor. The classical binding pocket for benzodiazepines is located in a subunit cleft between α(1) and γ(2) subunits in a position homologous to the agonist binding site for GABA that is located between β(2) and α(1) subunits. We review here approaches to this picture. In particular, point mutations were performed in combination with subsequent analysis of the expressed mutant proteins using either electrophysiological techniques or radioactive ligand binding assays. The predictive power of these methods is assessed by comparing the results with the predictions that can be made on the basis of the recently published crystal structure of the acetylcholine binding protein that shows homology to the N-terminal, extracellular domain of the GABA(A) receptor. In addition, we review an approach to the question of how the benzodiazepine ligands are positioned in their binding pocket. We also discuss a newly postulated modulatory site for benzodiazepines at the α(1)/β(2) subunit interface, homologous to the classical benzodiazepine binding pocket.
Resumo:
A major challenge in the management of patients with prostate cancer is identifying those individuals at risk of developing metastatic disease, as in most cases the disease will remain indolent. We analyzed pooled serum samples from 4 groups of patients (n = 5 samples/group), collected prospectively and actively monitored for a minimum of 5 yrs. Patients groups were (i) histological diagnosis of benign prostatic hyperplasia with no evidence of cancer 'BPH', (ii) localised cancer with no evidence of progression, 'non-progressing' (iii) localised cancer with evidence of biochemical progression, 'progressing', and (iv) bone metastasis at presentation 'metastatic'. Pooled samples were immuno-depleted of the 14 most highly abundant proteins and analysed using a 4-plex iTRAQ approach. Overall 122 proteins were identified and relatively quantified. Comparisons of progressing versus non-progressing groups identified the significant differential expression of 25 proteins (p<0.001). Comparisons of metastatic versus progressing groups identified the significant differential expression of 23 proteins. Mapping the differentially expressed proteins onto the prostate cancer progression pathway revealed the dysregulated expression of individual proteins, pairs of proteins and 'panels' of proteins to be associated with particular stages of disease development and progression. The median immunostaining intensity of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), one of the candidates identified, was significantly higher in osteoblasts in close proximity to metastatic tumour cells compared with osteoblasts in control bone (p = 0.0353, Mann Whitney U). Our proteomic approach has identified leads for potentially useful serum biomarkers associated with the metastatic progression of prostate cancer. The panels identified, including eEF1A1 warrant further investigation and validation.
Resumo:
We show that the five subunits of a gamma-aminobutyric acid type A receptor (GABA(A) receptor) can be concatenated to yield a functional receptor. This concatenated receptor alpha(1)-beta(2)-alpha(1)-gamma(2)-beta(2) has the advantage of a known subunit arrangement. Most of its functional properties are not significantly different from a receptor formed by individual subunits. Extent of expression amounted to about 40% of that of non-concatenated receptors in Xenopus oocytes, after injection of oocytes with comparable amounts of cRNA coding for concatenated and non-concatenated receptors. The ability to express receptors consisting of five subunits enables detailed studies of GABA(A) receptor subtype selective compounds.
Resumo:
The airways of cystic fibrosis (CF) patients are characterised by neutrophils that release high amounts of elastase overwhelming the local antiprotease shield. Inhalation of alpha(1)-antitrypsin (AAT) may restore the protease-antiprotease balance and attenuate airway inflammation in CF airways. The aims of the present study were: 1) to assess the best deposition region for inhaled AAT by two different inhalation strategies; and 2) to examine the effect of 4 weeks of AAT inhalation on lung function, protease-antiprotease balance and airway inflammation in CF patients. In a prospective, randomised study, 52 CF patients received a daily deposition by inhalation of 25 mg AAT for 4 weeks targeting their peripheral or bronchial compartment. The levels of elastase activity, AAT, pro-inflammatory cytokines, neutrophils, immunoglobulin G fragments and the numbers of Pseudomonas aeruginosa were assessed in induced sputum before and after the inhalation period. Inhalation of AAT increased AAT levels and decreased the levels of elastase activity, neutrophils, pro-inflammatory cytokines and the numbers of P. aeruginosa. However, it had no effect on lung function. No difference was found between the peripheral and bronchial inhalation mode. In conclusion, although no effect on lung function was observed, the clear reduction of airway inflammation after alpha(1)-antitrypsin treatment may precede pulmonary structural changes. The alpha(1)-antitrypsin deposition region may play a minor role for alpha(1)-antitrypsin inhalation in cystic fibrosis patients.
Resumo:
RATIONALE: Both psychotropic drugs and mental disorders have typical signatures in quantitative electroencephalography (EEG). Previous studies found that some psychotropic drugs had EEG effects opposite to the EEG effects of the mental disorders treated with these drugs (key-lock principle). OBJECTIVES: We performed a placebo-controlled pharmaco-EEG study on two conventional antipsychotics (chlorpromazine and haloperidol) and four atypical antipsychotics (olanzapine, perospirone, quetiapine, and risperidone) in healthy volunteers. We investigated differences between conventional and atypical drug effects and whether the drug effects were compatible with the key-lock principle. METHODS: Fourteen subjects underwent seven EEG recording sessions, one for each drug (dosage equivalent of 1 mg haloperidol). In a time-domain analysis, we quantified the EEG by identifying clusters of transiently stable EEG topographies (microstates). Frequency-domain analysis used absolute power across electrodes and the location of the center of gravity (centroid) of the spatial distribution of power in different frequency bands. RESULTS: Perospirone increased duration of a microstate class typically shortened in schizophrenics. Haloperidol increased mean microstate duration of all classes, increased alpha 1 and beta 1 power, and tended to shift the beta 1 centroid posterior. Quetiapine decreased alpha 1 power and shifted the centroid anterior in both alpha bands. Olanzapine shifted the centroid anterior in alpha 2 and beta 1. CONCLUSIONS: The increased microstate duration under perospirone and haloperidol was opposite to effects previously reported in schizophrenic patients, suggesting a key-lock mechanism. The opposite centroid changes induced by olanzapine and quetiapine compared to haloperidol might characterize the difference between conventional and atypical antipsychotics.