105 resultados para Zebu cows
Resumo:
A long-term study over 25 months was conducted to evaluate the effects of genetically modified corn on performance of lactating dairy cows. Thirty-six dairy cows were assigned to two feeding groups and fed with diets based on whole-crop silage, kernels and whole-crop cobs from Bt-corn (Bt-MON810) or its isogenic not genetically modified counterpart (CON) as main components. The study included two consecutive lactations. There were no differences in the chemical composition and estimated net energy content of Bt-MON810 and CON corn components and diets. CON feed samples were negative for the presence of Cry1Ab protein, while in Bt-MON810 feed samples the Cry1Ab protein was detected. Cows fed Bt-MON810 corn had a daily Cry1Ab protein intake of 6.0 mg in the first lactation and 6.1 mg in the second lactation of the trial. Dry matter intake (DMI) was 18.8 and 20.7 kg/cow per day in the first and the second lactation of the trial, with no treatment differences. Similarly, milk yield (23.8 and 29.0 kg/cow per day in the first and the second lactation of the trial) was not affected by dietary treatment. There were no consistent effects of feeding MON810 or its isogenic CON on milk composition or body condition. Thus, the present long-term study demonstrated the compositional and nutritional equivalence of Bt-MON810 and its isogenic CON.
Resumo:
Farm animals may serve as models for evaluating social networks in a controlled environment. We used an automated system to track, at fine temporal and spatial resolution (once per minute, +/- 50 cm) every individual in six herds of dairy cows (Bos taurus). We then analysed the data using social network analyses. Relationships were based on non-random attachment and avoidance relationships in respect to synchronous use and distances observed in three different functional areas (activity, feeding and lying). We found that neither synchrony nor distance between cows was strongly predictable among the three functional areas. The emerging social networks were tightly knit for attachment relationships and less dense for avoidance relationships. These networks loosened up from the feeding and lying area to the activity area, and were less dense for relationships based on synchronicity than on median distance with respect to node degree, relative size of the largest cluster, density and diameter of the network. In addition, synchronicity was higher in dyads of dairy cows that had grown up together and shared their last dry period. This last effect disappeared with increasing herd size. Dairy herds can be characterized by one strongly clustered network including most of the herd members with many non-random attachment and avoidance relationships. Closely synchronous dyads were composed of cows with more intense previous contact. The automatic tracking of a large number of individuals proved promising in acquiring the data necessary for tackling social network analyses.
Resumo:
Background Synchronization programs have become standard in the dairy industry in many countries. In Switzerland, these programs are not routinely used for groups of cows, but predominantly as a therapy for individual problem cows. The objective of this study was to compare the effect of a CIDR-Select Synch and a 12-d CIDR protocol on the pregnancy rate in healthy, multiparous dairy cows in Swiss dairy farms. Methods Cows (N = 508) were randomly assigned to CIDR-Select Synch (N = 262) or 12-d CIDR (N = 246) protocols. Cows in the CIDR-Select Synch group received a CIDR and 2.5 ml of buserelin i.m. on d 0. On d 7, the CIDR insert was removed and 5 ml of dinoprost was administered i.m.. Cows in the 12-d CIDR group received the CIDR on d 0 and it was removed on d 12 (the routine CIDR protocol in Swiss dairies). On d 0 a milk sample for progesterone analysis was taken. Cows were inseminated upon observed estrus. Pregnancy was determined at or more than 35 days after artificial insemination. As a first step, the two groups were compared as to indication for treatment, breed, stud book, stall, pasture, and farmer's business using chi square tests or Fisher's exact test. Furthermore, groups were compared as to age, DIM, number of AI's, number of cows per farm, and yearly milk yield per cow using nonparametric ANOVA. A multiple logistic model was used to relate the success of the protocols to all of the available factors; in particular treatment (CIDR-Select Synch/12-d CIDR), milk progesterone value, age, DIM, previous treatment of the uterus, previous gynecological treatment, and number of preceding inseminations. Results The pregnancy rate was higher in cows following the CIDR-Select Synch compared to the 12-d CIDR protocol (50.4% vs. 22.4%; P < 0.0001). Conclusion The CIDR-Select Synch protocol may be highly recommended for multiparous dairy cows. The reduced time span of the progesterone insert decreased the number of days open, improved the pregnancy rate compared to the 12-d CIDR protocol and the cows did not to have to be handled more often.
Resumo:
BACKGROUND: During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection. METHODS: Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture. RESULTS: Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'. CONCLUSIONS: The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.
Resumo:
The pain and distress associated with transcutaneous electrical nerve stimulation (TENS) of the udder was evaluated by treating 20 healthy dairy cows with an electrical udder stimulator. This generated a sequence of pulses (frequency: 160+/-10% impulses per second, duration 250 mus) and provided voltage ranges from 0 to 10 volts (+/-10%). Trials took place on three consecutive days, twice daily after morning and evening milking. Daily sessions were divided into two periods: (1) control (sham treatment) and (2) treatment (real treatment). Physiological (heart rate, respiratory rate, and plasma cortisol concentration) as well as ethological parameters (kicking, weight shifting, and looking backwards to udder) were defined as pain-indicating parameters and observed. Evaluation of data showed that only one parameter (kicking) was significantly increased during real treatment compared to sham treatment. It is concluded that the TENS therapy tested in this study can evoke changes in behaviour (increased kicking) consistent with an experience of pain in some cows.
Resumo:
Herens cows have been treated at the Clinic for Ruminants, University of Berne, more frequently for fertility problems than other breeds. The aim of the study was to overview the reproductive performance of the Herens breed by analyzing data sets of the Herens Breeding Book and of the Animal Traffic Database of Switzerland. In addition, a questionnaire was sent to the breeders concerning aspects of management and care to identify a possible influence on the reproductive performance of the animals. Based on 4988 lactations starting in 2003, an average interval of calving to first insemination of 86 days a calving to conception interval of 146 days and an inter calving period of 431 days could be calculated. Conception rate resulted in 39.1%, the fertility index was 1.87 and 6.5% of all cows were culled because of fertility problems. Half of the breeders owned 4 or less cows. The most important reason for keeping Herens cows was cow fighting. Traditional alpine pasturing and cow fight rules resulted in a seasonal calving with 80% of the births taking place between October and December. The calving month and seasonal calving were the most important reasons for a prolonged calving to conception interval.
Resumo:
The aim of the present study was to evaluate the diurnal rhythm of melatonin concentration in blood and milk of dairy cows. Blood was sampled and the entire milk was removed every hour and melatonin concentration was measured throughout 24 hours in June in 12 dairy cows (around 16 hours daylight). Both, blood plasma and milk melatonin concentration showed a diurnal pattern with high levels during scotoperiod and low levels during photoperiod. Average blood plasma melatonin was 16.2 +/- 2.3 pg/mL during the photoperiod (0800-2200h), started to increase at 2100h, and reached a plateau at 2300h (16.0 +/- 4.4 pg/mL). Peak concentration was reached at 0100h (25.4 +/- 5.6 pg/mL). At 0700h melatonin decreased to baseline level again. The melatonin pattern in milk paralleled the pattern in blood. However, the concentration of melatonin was much lower in milk than in blood with a maximum concentration of 2.9 +/- 0.6 pg/mL at all tested time points.
Resumo:
Many metabolic hormones, growth hormone (GH), insulin-like growth factor-I (IGF-I) and insulin affect ovarian functions. However, whether ovarian steroid hormones affect metabolic hormones in cattle remains unknown. This study aimed to determine the effect of sex steroids on the plasma profiles of GH, IGF-I and insulin and their receptors in the liver and adipose tissues of dairy cows. Ovariectomized cows (n = 14) were randomly divided into four groups: control group (n = 3) was treated with saline on Day 0; oestradiol (E2) group (n = 3), with saline and 1 mg oestradiol benzoate (EB) on Day 0 and 5, respectively; progesterone (P4) group (n = 4) with two CIDRs (Pfizer Inc., Tokyo, Japan) from Day 0; and E2 + P4 group (n = 4) with two CIDRs on Day 0 that were removed on Day 6 and were immediately injected with 1 mg EB. The animals were euthanized after the experiment, and liver and adipose tissues samples were quantitatively analysed using real-time PCR for the expression of mRNA for the GH (GHR), IGF-I (IGFR-I) and insulin (IR) receptor mRNAs. Oestradiol benzoate significantly increased the number of peaks (p < 0.05), pulse amplitude (p < 0.05) and area under the curve (AUC; p < 0.01) for plasma GH; moreover, it increased plasma IGF-I concentration (p < 0.05), but it had no effect on the plasma insulin profile. P4 significantly decreased the AUC (p < 0.01), compared with the control group, whereas it did not affect the number of peaks and the amplitude of GH pulses. P4 + E2 did not affect the GH pulse profile. E2 increased the mRNA expression of GHR, IGFR-I and IR in the liver (p < 0.05), whereas both P4 and E2 + P4 did not change their expressions. Our results provide evidence that the metabolic and reproductive endocrine axes may regulate each other to ensure optimal reproductive and metabolic function.
Resumo:
The aim of this study was to investigate the effects of a severe nutrient restriction on mammary tissue morphology and remodeling, mammary epithelial cell (MEC) turnover and activity, and hormonal status in lactating dairy cows. We used 16 Holstein x Normande crossbred dairy cows, divided into 2 groups submitted to different feeding levels (basal and restricted) from 2 wk before calving to wk 11 postpartum. Restricted-diet cows had lower 11-wk average daily milk yield from calving to slaughter than did basal-diet cows (20.5 vs. 33.5 kg/d). Feed restriction decreased milk fat, protein, and lactose yields. Restriction also led to lower plasma insulin-like growth factor 1 and higher growth hormone concentrations. Restricted-diet cows had lighter mammary glands than did basal-diet cows. The total amount of DNA in the mammary gland and the size of the mammary acini were smaller in the restricted-diet group. Feed restriction had no significant effect on MEC proliferation at the time of slaughter but led to a higher level of apoptosis in the mammary gland. Gelatin zymography highlighted remodeling of the mammary extracellular matrix in restricted-diet cows. Udders from restricted-diet cows showed lower transcript expression of alpha-lactalbumin and kappa-casein. In conclusion, nutrient restriction resulted in lower milk yield in lactating dairy cows, partly due to modulation of MEC activity and a lower number of mammary cells. An association was found between feed restriction-induced changes in the growth hormone-insulin-like growth factor-1 axis and mammary epithelial cell dynamics.
Resumo:
Milk fatty acid (FA) profile is a dynamic pattern influenced by lactational stage, energy balance and dietary composition. In the first part of this study, effects of the energy balance during the proceeding lactation [weeks 1-21 post partum (pp)] on milk FA profile of 30 dairy cows were evaluated under a constant feeding regimen. In the second part, effects of a negative energy balance (NEB) induced by feed restriction on milk FA profile were studied in 40 multiparous dairy cows (20 feed-restricted and 20 control). Feed restriction (energy balance of -63 MJ NEL/d, restriction of 49 % of energy requirements) lasted 3 weeks starting at around 100 days in milk. Milk FA profile changed markedly from week 1 pp up to week 12 pp and remained unchanged thereafter. The proportion of saturated FA (predominantly 10:0, 12:0, 14:0 and 16:0) increased from week 1 pp up to week 12 pp, whereas monounsaturated FA, predominantly the proportion of 18:1,9c decreased as NEB in early lactation became less severe. During the induced NEB, milk FA profile showed a similarly directed pattern as during the NEB in early lactation, although changes were less marked for most FA. Milk FA composition changed rapidly within one week after initiation of feed restriction and tended to adjust to the initial composition despite maintenance of a high NEB. C18:1,9c was increased significantly during the induced NEB indicating mobilization of a considerable amount of adipose tissue. Besides 18:1,9c, changes in saturated FA, monounsaturated FA, de-novo synthesized and preformed FA (sum of FA >C16) reflected energy status in dairy cows and indicated the NEB in early lactation as well as the induced NEB by feed restriction.
Resumo:
Homeorhetic and homeostatic controls in dairy cows are essential for adapting to alterations in physiological and environmental conditions. To study the different mechanisms during adaptation processes, effects of a deliberately induced negative energy balance (NEB) by feed restriction near 100 d in milk (DIM) on performance and metabolic measures were compared with lactation energy deficiency after parturition. Fifty multiparous cows were studied in 3 periods (1=early lactation up to 12 wk postpartum; 2=feed restriction for 3 wk beginning at 98+/-7 DIM with a feed-restricted and control group; and 3=a subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, despite NEB in early lactation [-42 MJ of net energy for lactation (NE(L))/d, wk 1 to 3] up to wk 9, milk yield increased from 27.5+/-0.7 kg to a maximum of 39.5+/-0.8 kg (wk 6). For period 2, the NEB was induced by individual limitation of feed quantity and reduction of dietary energy density. Feed-restricted cows experienced a greater NEB (-63 MJ of NEL/d) than did cows in early lactation. Feed-restricted cows in period 2 showed only a small decline in milk yield of -3.1+/-1.1 kg and milk protein content of -0.2+/-0.1% compared with control cows (30.5+/-1.1 kg and 3.8+/-0.1%, respectively). In feed-restricted cows (period 2), plasma glucose was lower (-0.2+/-0.0 mmol/L) and nonesterified fatty acids higher (+0.1+/-0.1 mmol/L) compared with control cows. Compared with the NEB in period 1, the decreases in body weight due to the deliberately induced NEB (period 2) were greater (56+/-4 vs. 23+/-3 kg), but decreases in body condition score (0.16+/-0.03 vs. 0.34+/-0.04) and muscle diameter (2.0+/-0.4 vs. 3.5+/-0.4 mm) were lesser. The changes in metabolic measures in period 2 were marginal compared with the adjustments directly after parturition in period 1. Despite the greater induced energy deficiency at 100 DIM than the early lactation NEB, the metabolic load experienced by the dairy cows was not as high as that observed in early lactation. The different effects of energy deficiency at the 2 stages in lactation show that metabolic problems in early lactating dairy cows are not due only to the NEB, but mainly to the specific metabolic regulation during this period.
Resumo:
The liver has an important role in metabolic regulation and control of the somatotropic axis to adapt successfully to physiological and environmental changes in dairy cows. The aim of this study was to investigate the adaptation to negative energy balance (NEB) at parturition and to a deliberately induced NEB by feed restriction at 100 days in milk. The hepatic gene expression and the endocrine system of the somatotropic axis and related parameters were compared between the early and late NEB period. Fifty multiparous cows were subjected to 3 periods (1=early lactation up to 12 wk postpartum, 2=feed restriction for 3 wk beginning at around 100 days in milk with a feed-restricted and a control group, and 3=subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, plasma growth hormone reached a maximum in early lactation, whereas insulin-like growth factor-I (IGF-I), leptin, the thyroid hormones, insulin, and the revised quantitative insulin sensitivity check index increased gradually after a nadir in early lactation. Three days after parturition, hepatic mRNA abundance of growth hormone receptor 1A, IGF-I, IGF-I receptor and IGF-binding protein-3 (IGFBP-3) were decreased, whereas mRNA of IGFBP-1 and -2 and insulin receptor were upregulated as compared with wk 3 antepartum. During period 2, feed-restricted cows showed decreased plasma concentrations of IGF-I and leptin compared with those of control cows. The revised quantitative insulin sensitivity check index was lower for feed-restricted cows (period 2) than for control cows. Compared with the NEB in period 1, the changes due to the deliberately induced NEB (period 2) in hormones were less pronounced. At the end of the 3-wk feed restriction, the mRNA abundance of IGF-I, IGFBP-1, -2, -3, and insulin receptor was increased as compared with the control group. The different effects of energy deficiency at the 2 stages in lactation show that the endocrine regulation changes qualitatively and quantitatively during the course of lactation.
Resumo:
Experiments were designed to investigate the suitability of a combination of a short manual teat stimulation with a short latency period before teat cup attachment to induce and maintain oxytocin release and milk ejection without interruption. In Experiment 1, seven dairy cows in mid lactation were manually pre-stimulated for 15, 30 or 45 s, followed by either 30 s or 45 s of latency period. It was shown that all treatments induced a similar release of oxytocin without interruption until the end of milking. In particular, the latency period of up to 45 s did not cause a transient decrease of oxytocin concentration. In Experiment 2, milking characteristics were recorded in seven cows each in early, mid, and late lactation, respectively. Because the course of milk ejection depends mainly on the degree of udder filling, individual milkings were classified based on the actual degree of udder filling which differs between lactational stages but also between morning and evening milkings. All animals underwent twelve different udder preparation treatments, i.e. 15, 30, or 45 s of pre-stimulation followed by latency periods of 0, 30, 45, or 60 s. Milking characteristics were recorded. Total milk yield, main milking time and average milk flow rate did not differ between treatments if the degree of udder filling at the start of milking was >40% of the maximum storage capacity. However, if the udder filling was <40%, main milking time was decreased with the duration of a latency period up to 45 s, independent of duration of pre-stimulation. Average milk flow at an udder filling of <40% was highest after a pre-stimulation of 45 s followed by a latency period of another 45 s. In contrast, average milk flow reached its lowest values at a pre-stimulation of 15 s without additional latency period. However, average milk flow after a 15-s pre-stimulation increased with increasing latency period. In conclusion, a very short pre-stimulation when followed by a latency period up to 45 s before teat cup attachment remains a suitable alternative for continuous stimulation to induce milk ejection.
Resumo:
The primary aim was to investigate the effect of combined butafosfan and cyanocobalamin on liver metabolism in early lactating cows through mRNA expression measurements of genes encoding 31 enzymes and transport proteins of major metabolic processes in the liver using 16 multiparous early lactating dairy cows. The treatments included i.v. injection of 10 mL/100 kg of body weight combined butafosfan and cyanocobalamin (TG, n = 8) on 3 d consecutively at 25 +/- 3 d in milk or injection with physiological saline solution similarly applied (CG, n = 8). Results include a higher daily milk production for TG cows (41.1 +/- 0.9 kg, mean +/- SEM) compared with CG cows (39.5 +/- 0.7 kg). In plasma, the concentration of inorganic phosphorus was lower in the TG cows (1.25 +/- 0.08 mmol/L) after the treatment than in the CG cows (1.33 +/- 0.07 mmol/L). The plasma beta-hydroxybutyrate concentration was 0.65 +/- 0.13 mmol/L for all cows before the treatment, and remained unaffected post treatment. The unique result was that in the liver, the mRNA abundance of acyl-coenzyme A synthetase long-chain family member 1, involved in fatty acid oxidation and biosynthesis, was lower across time points after the treatment for TG compared with CG cows (17.5 +/- 0.15 versus 18.1 +/- 0.24 cycle threshold, log(2), respectively). In conclusion, certain effects of combined butafosfan and cyanocobalamin were observed on mRNA abundance of a gene in the liver of nonketotic early lactating cows.