31 resultados para Web-Assisted Error Detection
Children's performance estimation in mathematics and science tests over a school year: A pilot study
Resumo:
The metacognitve ability to accurately estimate ones performance in a test, is assumed to be of central importance for initializing task-oriented effort. In addition activating adequate problem-solving strategies, and engaging in efficient error detection and correction. Although school children's' ability to estimate their own performance has been widely investigated, this was mostly done under highly-controlled, experimental set-ups including only one single test occasion. Method: The aim of this study was to investigate this metacognitive ability in the context of real achievement tests in mathematics. Developed and applied by a teacher of a 5th grade class over the course of a school year these tests allowed the exploration of the variability of performance estimation accuracy as a function of test difficulty. Results: Mean performance estimations were generally close to actual performance with somewhat less variability compared to test performance. When grouping the children into three achievement levels, results revealed higher accuracy of performance estimations in the high achievers compared to the low and average achievers. In order to explore the generalization of these findings, analyses were also conducted for the same children's tests in their science classes revealing a very similar pattern of results compared to the domain of mathematics. Discussion and Conclusion: By and large, the present study, in a natural environment, confirmed previous laboratory findings but also offered additional insights into the generalisation and the test dependency of students' performances estimations.
Resumo:
OBJECTIVES To find the best pairing of first and second reader at highest sensitivity for detecting lung nodules with CT at various dose levels. MATERIALS AND METHODS An anthropomorphic lung phantom and artificial lung nodules were used to simulate screening CT-examination at standard dose (100 mAs, 120 kVp) and 8 different low dose levels, using 120, 100 and 80 kVp combined with 100, 50 and 25 mAs. At each dose level 40 phantoms were randomly filled with 75 solid and 25 ground glass nodules (5-12 mm). Two radiologists and 3 different computer aided detection softwares (CAD) were paired to find the highest sensitivity. RESULTS Sensitivities at standard dose were 92%, 90%, 84%, 79% and 73% for reader 1, 2, CAD1, CAD2, CAD3, respectively. Combined sensitivity for human readers 1 and 2 improved to 97%, (p1=0.063, p2=0.016). Highest sensitivities--between 97% and 99.0%--were achieved by combining any radiologist with any CAD at any dose level. Combining any two CADs, sensitivities between 85% and 88% were significantly lower than for radiologists combined with CAD (p<0.03). CONCLUSIONS Combination of a human observer with any of the tested CAD systems provide optimal sensitivity for lung nodule detection even at reduced dose at 25 mAs/80 kVp.
Resumo:
OBJECTIVES The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD. METHODS An anthropomorphic chest phantom containing artificial solid and ground glass nodules (GGNs, 5-12 mm) was examined with a 64-row multi-detector CT scanner with three tube currents of 100, 50 and 25 mAs in combination with three tube voltages of 120, 100 and 80 kVp. This resulted in eight different protocols that were then compared to standard CT sensitivity (100 mAs/120 kVp). For each protocol, at least 127 different nodules were scanned in 21-25 phantoms. The nodules were analyzed in two separate sessions by three independent, blinded radiologists and computer-aided detection (CAD) software. RESULTS The mean sensitivity of the radiologists for identifying solid lung nodules on a standard CT was 89.7% ± 4.9%. The sensitivity was not significantly impaired when the tube and current voltage were lowered at the same time, except at the lowest exposure level of 25 mAs/80 kVp [80.6% ± 4.3% (p = 0.031)]. Compared to the standard CT, the sensitivity for detecting GGNs was significantly lower at all dose levels when the voltage was 80 kVp; this result was independent of the tube current. The CAD significantly increased the radiologists' sensitivity for detecting solid nodules at all dose levels (5-11%). No significant volume measurement errors (VMEs) were documented for the radiologists or the CAD software at any dose level. CONCLUSIONS Our results suggest a CT protocol with 25 mAs and 100 kVp is optimal for detecting solid and ground glass nodules in lung cancer screening. The use of CAD software is highly recommended at all dose levels.
Resumo:
We have developed a haptic-based approach for retraining of interjoint coordination following stroke called time-independent functional training (TIFT) and implemented this mode in the ARMin III robotic exoskeleton. The ARMin III robot was developed by Drs. Robert Riener and Tobias Nef at the Swiss Federal Institute of Technology Zurich (Eidgenossische Technische Hochschule Zurich, or ETH Zurich), in Zurich, Switzerland. In the TIFT mode, the robot maintains arm movements within the proper kinematic trajectory via haptic walls at each joint. These arm movements focus training of interjoint coordination with highly intuitive real-time feedback of performance; arm movements advance within the trajectory only if their movement coordination is correct. In initial testing, 37 nondisabled subjects received a single session of learning of a complex pattern. Subjects were randomized to TIFT or visual demonstration or moved along with the robot as it moved though the pattern (time-dependent [TD] training). We examined visual demonstration to separate the effects of action observation on motor learning from the effects of the two haptic guidance methods. During these training trials, TIFT subjects reduced error and interaction forces between the robot and arm, while TD subject performance did not change. All groups showed significant learning of the trajectory during unassisted recall trials, but we observed no difference in learning between groups, possibly because this learning task is dominated by vision. Further testing in stroke populations is warranted.
Resumo:
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Resumo:
PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS : Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS : The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS : Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.
Resumo:
OBJECTIVE: To design and evaluate a novel computer-assisted, fluoroscopy-based planning and navigation system for minimally invasive ventral spondylodesis of thoracolumbar fractures. MATERIALS AND METHODS: Instruments and an image intensifier are tracked with the SurgiGATE navigation system (Praxim-Medivision). Two fluoroscopic images, one acquired from anterior-posterior (AP) direction and the other from lateral-medial (LM) direction, are used for the complete procedure of planning and navigation. Both of them are calibrated with a custom-made software to recover their projection geometry and to co-register them to a common patient reference coordinate system, which is established by attaching an opto-electronically trackable dynamic reference base (DRB) on the operated vertebra. A bi-planar landmark reconstruction method is used to acquire deep-seated anatomical landmarks such that an intraoperative planning of graft bed can be interactively done. Finally, surgical actions such as the placement of the stabilization devices and the formation of the graft bed using a custom-made chisel are visualized to the surgeon by superimposing virtual instrument representations onto the acquired images. The distance between the instrument tip and each wall of the planned graft bed are calculated on the fly and presented to the surgeon so that the surgeon could formalize the graft bed exactly according to his/her plan. RESULTS: Laboratory studies on phantom and on 27 plastic vertebras demonstrate the high precision of the proposed navigation system. Compared with CT-based measurement, a mean error of 1.0 mm with a standard deviation of 0.1 mm was found. CONCLUSIONS: The proposed computer assisted, fluoroscopy-based planning and navigation system promises to increase the accuracy and reliability of minimally invasive ventral spondylodesis of thoracolumbar fractures.
Resumo:
Mastitis is the most prevalent infectious disease in dairy herds. Breeding programs considering mastitis susceptibility were adopted as approaches to improve udder health status. In recent decades, conventional selection criteria based on phenotypic characteristics such as somatic cell score in milk have been widely used to select animals. Recently, approaches to incorporate molecular information have become feasible because of the detection of quantitative trait loci (QTL) affecting mastitis resistance. The aims of the study were to explore molecular mechanisms underlying mastitis resistance and the genetic mechanisms underlying a QTL on Bos taurus chromosome 18 found to influence udder health. Primary cell cultures of mammary epithelial cells from heifers that were selected for high or low susceptibility to mastitis were established. Selection based on estimated pedigree breeding value or on the basis of marker-assisted selection using QTL information was implemented. The mRNA expression of 10 key molecules of the innate immune system was measured using quantitative real-time PCR after 1, 6, and 24 h of challenge with heat-inactivated mastitis pathogens (Escherichia coli and Staphylococcus aureus) and expression levels in the high and low susceptibility groups were compared according to selection criteria. In the marker-assisted selection groups, mRNA expression in cells isolated from less-susceptible animals was significantly elevated for toll-like receptor 2, tumor necrosis factor-alpha, IL-1beta, IL-6, IL-8, RANTES (regulated upon activation, normal t-cell expressed and secreted), complement factor C3, and lactoferrin. In the estimated pedigree breeding value groups, mRNA expression was significantly elevated only for V-rel reticuloendotheliosis viral oncogene homolog A, IL-1 beta, and RANTES. These observations provide first insights into genetically determined divergent reactions to pathogens in the bovine mammary gland and indicate that the application of QTL information could be a successful tool for the selection of animals resistant to mastitis.
Resumo:
HYPOTHESIS Facial nerve monitoring can be used synchronous with a high-precision robotic tool as a functional warning to prevent of a collision of the drill bit with the facial nerve during direct cochlear access (DCA). BACKGROUND Minimally invasive direct cochlear access (DCA) aims to eliminate the need for a mastoidectomy by drilling a small tunnel through the facial recess to the cochlea with the aid of stereotactic tool guidance. Because the procedure is performed in a blind manner, structures such as the facial nerve are at risk. Neuromonitoring is a commonly used tool to help surgeons identify the facial nerve (FN) during routine surgical procedures in the mastoid. Recently, neuromonitoring technology was integrated into a commercially available drill system enabling real-time monitoring of the FN. The objective of this study was to determine if this drilling system could be used to warn of an impending collision with the FN during robot-assisted DCA. MATERIALS AND METHODS The sheep was chosen as a suitable model for this study because of its similarity to the human ear anatomy. The same surgical workflow applicable to human patients was performed in the animal model. Bone screws, serving as reference fiducials, were placed in the skull near the ear canal. The sheep head was imaged using a computed tomographic scanner and segmentation of FN, mastoid, and other relevant structures as well as planning of drilling trajectories was carried out using a dedicated software tool. During the actual procedure, a surgical drill system was connected to a nerve monitor and guided by a custom built robot system. As the planned trajectories were drilled, stimulation and EMG response signals were recorded. A postoperative analysis was achieved after each surgery to determine the actual drilled positions. RESULTS Using the calibrated pose synchronized with the EMG signals, the precise relationship between distance to FN and EMG with 3 different stimulation intensities could be determined for 11 different tunnels drilled in 3 different subjects. CONCLUSION From the results, it was determined that the current implementation of the neuromonitoring system lacks sensitivity and repeatability necessary to be used as a warning device in robotic DCA. We hypothesize that this is primarily because of the stimulation pattern achieved using a noninsulated drill as a stimulating probe. Further work is necessary to determine whether specific changes to the design can improve the sensitivity and specificity.
Resumo:
We report the first in situ measurements of neutral deuterium originating in the local interstellar medium (LISM) in Earth’s orbit. These measurements were performed with the IBEX-Lo camera on NASA’s interstellar boundary explorer (IBEX) satellite. All data from the spring observation periods of 2009 through 2011 have been analysed. In the three years of the IBEX mission time, the observation geometry and orbit allowed for a total observation time of 115.3 days for the LISM. However, the effects of the spinning spacecraft and the stepping through 8 energy channels mean that we are only observing the interstellar wind for a total time of 1.44 days, in which 2 counts for interstellar deuterium were collected. We report here a conservative number, because a possibility of systematic error or additional noise, though eliminated in our analysis to the best of our knowledge, only supports detection at a 1-sigma level. From these observations, we derive a ratio D/H = (5.8 ± 4.4) × 10-4 at 1 AU. After modelling the transport and loss of D and H from the termination shock to Earth’s orbit, we find that our result of D/HLISM = (1.6 ± 1.2) × 10-5 agrees with D/HLIC = (1.6 ± 0.4) × 10-5 for the local interstellar cloud. This weak interstellar signal is extracted from a strong terrestrial background signal consisting of sputter products from the sensor’s conversion surface. As reference, we accurately measure the terrestrial D/H ratio in these sputtered products and then discriminate this terrestrial background source. Because of the diminishing D and H signal at Earth’s orbit during the rising solar activity due to photoionisation losses and increased photon pressure, our result demonstrates that in situ measurements of interstellar deuterium in the inner heliosphere are only possible during solar minimum conditions.
Resumo:
The human face is a vital component of our identity and many people undergo medical aesthetics procedures in order to achieve an ideal or desired look. However, communication between physician and patient is fundamental to understand the patient’s wishes and to achieve the desired results. To date, most plastic surgeons rely on either “free hand” 2D drawings on picture printouts or computerized picture morphing. Alternatively, hardware dependent solutions allow facial shapes to be created and planned in 3D, but they are usually expensive or complex to handle. To offer a simple and hardware independent solution, we propose a web-based application that uses 3 standard 2D pictures to create a 3D representation of the patient’s face on which facial aesthetic procedures such as filling, skin clearing or rejuvenation, and rhinoplasty are planned in 3D. The proposed application couples a set of well-established methods together in a novel manner to optimize 3D reconstructions for clinical use. Face reconstructions performed with the application were evaluated by two plastic surgeons and also compared to ground truth data. Results showed the application can provide accurate 3D face representations to be used in clinics (within an average of 2 mm error) in less than 5 min.
Resumo:
Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.