24 resultados para Tree Water Use


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1, 2, 3. However, uncertainties in the magnitude4, 5, 6 and consequences7, 8 of the physiological responses9, 10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the δ13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by ~0.76 ppmv, most consistent with moderate control towards a constant Ci/Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ± 10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tree water deficit estimated by measuring water-related changes in stem radius (DeltaW) was compared with tree water deficit estimated from the output of a simple, physiologically reasonable model (DeltaW(E)), with soil water potential (Psi(soil)) and atmospheric vapor pressure deficit (VPD) as inputs. Values of DeltaW were determined by monitoring stem radius changes with dendrometers and detrending the results for growth, We followed changes in DeltaW and DeltaW(E) in Pinus sylvestris L. and Quercus pubescens Willd. over 2 years at a dry site (2001-2002; Salgesch, Wallis) and in Picea abies (L.) Karst. for 1 year at a wet site (1998; Davos, Graubuenden) in the Swiss Alps. The seasonal courses of DeltaW in deciduous species and in conifers at the same site were similar and could be largely explained by variation in DeltaW(E). This finding strongly suggests that DeltaW, despite the known species-specific differences in stomatal response to microclimate, is mainly explained by a combination of atmospheric and soil conditions. Consequently, we concluded that trees are unable to maintain any particular DeltaW. Either Psi(soil) or VPD alone provided poorer estimates of AWthan a model incorporating both factors. As a first approximation of DeltaW(E), Psi(soil) can be weighted so that the negative mean Psi(soil) reaches 65 to 75% of the positive mean daytime VPD over a season (Q. pubescens: similar to65%, P abies: similar to70%, P sylvestris: similar to75%). The differences in DeltaW among species can be partially explained by a different weighting of Psi(soil) against VPD. The DeltaW of P. sylvestris was more dependent on Psi(soil) than that of Q. pubescens, but less than that of P. abies, and was less dependent on VPD than that of P. abies and Q. pubescens. The model worked well for P. abies at the wet site and for Q. pubescens and P. sylvestris at the dry site, and may be useful for estimating water deficit in other tree species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foresters frequently lack sufficient information about thinning intensity effects to optimize semi-natural forest management and their effects and interaction with climate are still poorly understood. In an Abies pinsapo–Pinus pinaster–Pinus sylvestris forest with three thinning intensities, a dendrochronologial approach was used to evaluate the short-term responses of basal area increment (BAI), carbon isotope (δ13C) and water use efficiency (iWUE) to thinning intensity and climate. Thinning generally increased BAI in all species, except for the heavy thinning in P. sylvestris. Across all the plots, thinning increased 13C-derived water-use efficiency on average by 14.49% for A. pinsapo, 9.78% for P. sylvestris and 6.68% for P. pinaster, but through different ecophysiological mechanisms. Our findings provide a robust mean of predicting water use efficiency responses from three coniferous species exposed to different thinning strategies which have been modulated by climatic conditions over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant diversity has been shown to influence the water cycle of forest ecosystems by differences in water consumption and the associated effects on groundwater recharge. However, the effects of biodiversity on soil water fluxes remain poorly understood for native tree species plantations in the tropics. Therefore, we estimated soil water fluxes and assessed the effects of tree species and diversity on these fluxes in an experimental native tree species plantation in Sardinilla (Panama). The study was conducted during the wet season 2008 on plots of monocultures and mixtures of three or six tree species. Rainfall and soil water content were measured and evapotranspiration was estimated with the Penman-Monteith equation. Soil water fluxes were estimated using a simple soil water budget model considering water input, output, and soil water and groundwater storage changes and in addition, were simulated using the physically based one-dimensional water flow model Hydrus-1D. In general, the Hydrus simulation did not reflect the observed pressure heads, in that modeled pressure heads were higher compared to measured ones. On the other hand, the results of the water balance equation (WBE) reproduced observed water use patterns well. In monocultures, the downward fluxes through the 200 cm-depth plane were highest below Hura crepitans (6.13 mm day−1) and lowest below Luehea seemannii (5.18 mm day−1). The average seepage rate in monocultures (±SE) was 5.66 ± 0.18 mm day−1, and therefore, significantly higher than below six-species mixtures (5.49 ± 0.04 mm day−1) according to overyielding analyses. The three-species mixtures had an average seepage rate of 5.63 ± 0.12 mm day−1 and their values did not differ significantly from the average values of the corresponding species in monocultures. Seepage rates were driven by the transpiration of the varying biomass among the plots (r = 0.61, p = 0.017). Thus, a mixture of trees with different growth rates resulted in moderate seepage rates compared to monocultures of either fast growing or slow growing tree species. Our results demonstrate that tree-species specific biomass production and tree diversity are important controls of seepage rates in the Sardinilla plantation during the wet season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate affects the timing, rate and dynamics of tree growth, over time scales ranging from seconds to centuries. Monitoring how a tree's stem radius varies over these time scales can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Here, we quantify the response of radial conifer stem size to environmental fluctuations via a novel assessment of tree circadian cycles. We analyze four years of sub-hourly data collected from 56 larch and spruce trees growing along a natural temperature gradient of ∼6 °C in the central Swiss Alps. During the growing season, tree stem diameters were greatest at mid-morning and smallest in the late evening, reflecting the daily cycle of water uptake and loss. Along the gradient, amplitudes calculated from the stem radius cycle were ∼50% smaller at the upper site (∼2200 m a.s.l.) relative to the lower site (∼800 m a.s.l.). We show changes in precipitation, temperature and cloud cover have a substantial effect on typical growing season diurnal cycles; amplitudes were nine times smaller on rainy days (>10 mm), and daily amplitudes are approximately 40% larger when the mean daily temperature is 15–20 °C than when it is 5–10 °C. We find that over the growing season in the sub-alpine forests, spruce show greater daily stem water movement than larch. However, under projected future warming, larch could experience up to 50% greater stem water use, which may severely affect future growth on already dry sites. Our data further indicate that because of the confounding influences of radial growth and short-term water dynamics on stem size, conventional methodology probably overstates the effect of water-linked meteorological variables (i.e. precipitation and relative humidity) on intra-annual tree growth. We suggest future studies use intra-seasonal measurements of cell development and consider whether climatic factors produce reversible changes in stem diameter. These study design elements may help researchers more accurately quantify and attribute changes in forest productivity in response to future warming.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a missing link between tree physiological and wood-anatomical knowledge which makes it impossible mechanistically to explain and predict the radial growth of individual trees from climate data. Empirical data of microclimatic factors, intra-annual growth rates, and tree-specific ratios between actual and potential transpiration (T PET−1) of trees of three species (Quercus pubescens, Pinus sylvestris, and Picea abies) at two dry sites in the central Wallis, Switzerland, were recorded from 2002 to 2004 at a 10 min resolution. This included the exceptionally hot and dry summer of 2003. These data were analysed in terms of direct (current conditions) and indirect impacts (predispositions of the past year) on growth. Rain was found to be the only factor which, to a large extent, consistently explained the radial increment for all three tree species at both sites and in the short term as well. Other factors had some explanatory power on the seasonal time-scale only. Quercus pubescens built up much of its tree ring before bud break. Pinus sylvestris and Picea abies started radial growth 1–2 weeks after Quercus pubescens and this was despite the fact that they had a high T PET−1 before budburst and radial growth started. A high T PET−1 was assumed to be related to open stomata, a very high net CO2 assimilation rate, and thus a potential carbon (C)-income for the tree. The main period of radial growth covered about 30–70% of the productive days of a year. In terms of C-allocation, these results mean that Quercus pubescens depended entirely on internal C-stores in the early phase of radial growth and that for all three species there was a long time period of C-assimilation which was not used for radial growth in above-ground wood. The results further suggest a strong dependence of radial growth on the current tree water relations and only secondarily on the C-balance. A concept is discussed which links radial growth over a feedback loop to actual tree water-relations and long-term affected C-storage to microclimate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Both climate change and socio-economic development will significantly modify the supply and consumption of water in future. Consequently, regional development has to face aggravation of existing or emergence of new conflicts of interest. In this context, transdisciplinary co-production of knowledge is considered as an important means for coping with these challenges. Accordingly, the MontanAqua project aims at developing strategies for more sustainable water management in the study area Crans-Montana-Sierre (Switzerland) in a transdisciplinary way. It strives for co-producing system, target and transformation knowledge among researchers, policy makers, public administration and civil society organizations. The research process basically consisted of the following steps: First, the current water situation in the study region was investigated. How much water is available? How much water is being used? How are decisions on water distribution and use taken? Second, participatory scenario workshops were conducted in order to identify the stakeholders’ visions of regional development. Third, the water situation in 2050 was simulated by modeling the evolution of water resources and water use and by reflecting on the institutional aspects. These steps laid ground for jointly assessing the consequences of the stakeholders’ visions of development in view of scientific data regarding governance, availability and use of water in the region as well as developing necessary transformation knowledge. During all of these steps researchers have collaborated with stakeholders in the support group RegiEau. The RegiEau group consists of key representatives of owners, managers, users, and pressure groups related to water and landscape: representatives of the communes (mostly the presidents), the canton (administration and parliament), water management associations, agriculture, viticulture, hydropower, tourism, and landscape protection. The aim of the talk is to explore potentials and constraints of scientific modeling of water availability and use within the process of transdisciplinary co-producing strategies for more sustainable water governance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leafing phenology of two dry-forest sites on soils of different depth (S = shallow, D = deep) at Shipstern Reserve, Belize, were compared at the start of the rainy season (April-June 2000). Trees greater than or equal to 2.5 cm dbh were recorded weekly for 8 wk in three 0.04-ha plots per site. Ten species were analysed individually for their phenological patterns, of which the three most common were Bursera simaruba, Metopium brownei and Jatropha gaumeri. Trees were divided into those in the canopy (> 10 cm dbh) and the subcanopy (less than or equal to 10 cm dbh). Site S had larger trees on average than site D. The proportion of trees flushing leaves at any one time was generally higher in site S than in site D, for both canopy and subcanopy trees. Leaf flush started 2 wk earlier in site S than site D for subcanopy trees, but only 0.5 wk earlier for the canopy trees. Leaf flush duration was 1.5 wk longer in site S than site D. Large trees in the subcanopy flushed leaves earlier than small ones at both sites but in the canopy just at site D. Large trees flushed leaves earlier than small ones in three species and small trees flushed leaves more rapidly in two species. Bursera and Jatropha followed the general trends but Metopium, with larger trees in site D than site S, showed the converse with onset of flushing I wk earlier in site D than site S. Differences in response of the canopy and subcanopy trees on each site can be accounted for by the predominance of spring-flushing or stem-succulent species in site S and a tendency for evergreen species to occur in site D. Early flushing of relatively larger trees in site D most likely requires access to deeper soil water reserves but small and large trees utilize stored tree water in site S.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modeling of future water systems at the regional scale is a difficult task due to the complexity of current structures (multiple competing water uses, multiple actors, formal and informal rules) both temporally and spatially. Representing this complexity in the modeling process is a challenge that can be addressed by an interdisciplinary and holistic approach. The assessment of the water system of the Crans-Montana-Sierre area (Switzerland) and its evolution until 2050 were tackled by combining glaciological, hydrogeological, and hydrological measurements and modeling with the evaluation of water use through documentary, statistical and interview-based analyses. Four visions of future regional development were co-produced with a group of stakeholders and were then used as a basis for estimating future water demand. The comparison of the available water resource and the water demand at monthly time scale allowed us to conclude that for the four scenarios socioeconomic factors will impact on the future water systems more than climatic factors. An analysis of the sustainability of the current and future water systems based on four visions of regional development allowed us to identify those scenarios that will be more sustainable and that should be adopted by the decision-makers. The results were then presented to the stakeholders through five key messages. The challenges of communicating the results in such a way with stakeholders are discussed at the end of the article.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the literature, contrasting effects of plant species richness on the soil water balance are reported. Our objective was to assess the effects of plant species and functional richness and functional identity on soil water contents and water fluxes in the experimental grassland of the Jena Experiment. The Jena Experiment comprises 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional group composition (zero to four functional groups: legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design. We recorded meteorological data and soil water contents of the 0·0–0·3 and 0·3–0·7 m soil layers and calculated actual evapotranspiration (ETa), downward flux (DF), and capillary rise with a soil water balance model for the period 2003–2007. Missing water contents were estimated with a Bayesian hierarchical model. Species richness decreased water contents in subsoil during wet soil conditions. Presence of tall herbs increased soil water contents in topsoil during dry conditions and decreased soil water contents in subsoil during wet conditions. Presence of grasses generally decreased water contents in topsoil, particularly during dry phases; increased ETa and decreased DF from topsoil; and decreased ETa from subsoil. Presence of legumes, in contrast, decreased ETa and increased DF from topsoil and increased ETa from subsoil. Species richness probably resulted in complementary water use. Specific functional groups likely affected the water balance via specific root traits (e.g. shallow dense roots of grasses and deep taproots of tall herbs) or specific shading intensity caused by functional group effects on vegetation cover. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study examines the validity of the assumption that international large-scale land acquisition (LSLA) is motivated by the desire to secure control over water resources, which is commonly referred to as ‘water grabbing’. This assumption was repeatedly expressed in recent years, ascribing the said motivation to the Gulf States in particular. However, it must be considered of hypothetical nature, as the few global studies conducted so far focused primarily on the effects of LSLA on host countries or on trade in virtual water. In this study, we analyse the effects of 475 intended or concluded land deals recorded in the Land Matrix database on the water balance in both host and investor countries. We also examine how these effects relate to water stress and how they contribute to global trade in virtual water. The analysis shows that implementation of the LSLAs in our sample would result in global water savings based on virtual water trade. At the level of individual LSLA host countries, however, water use intensity would increase, particularly in 15 sub-Saharan states. From an investor country perspective, the analysis reveals that countries often suspected of using LSLA to relieve pressure on their domestic water resources—such as China, India, and all Gulf States except Saudi Arabia—invest in agricultural activities abroad that are less water-intensive compared to their average domestic crop production. Conversely, large investor countries such as the United States, Saudi Arabia, Singapore, and Japan are disproportionately externalizing crop water consumption through their international land investments. Statistical analyses also show that host countries with abundant water resources are not per se favoured targets of LSLA. Indeed, further analysis reveals that land investments originating in water-stressed countries have only a weak tendency to target areas with a smaller water risk.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reconstruction of the human past is a complex task characterized by a high level of interdisciplinarity. How do scientists from different fields reach consensus on crucial aspects of paleoanthropological research? The present paper explores this question through an historical analysis of the origin, development, and reception of the savannah hypotheses (SHs). We show that this model neglected to investigate crucial biological aspects which appeared to be irrelevant in scenarios depicting early hominins evolving in arid or semi-arid open plains. For instance, the exploitation of aquatic food resources and other aspects of hominin interaction with water were largely ignored in classical paleoanthropology. These topics became central to alternative ideas on human evolution known as aquatic hypotheses. Since the aquatic model is commonly regarded as highly controversial, its rejection led to a stigmatization of the whole spectrum of topics around water use in non-human hominoids and hominins. We argue that this bias represents a serious hindrance to a comprehensive reconstruction of the human past. Progress in this field depends on clear differentiation between hypotheses proposed to contextualize early hominin evolution in specific environmental settings and research topics which demand the investigation of all relevant facets of early hominins' interaction with complex landscapes.