32 resultados para Toll roads.
Resumo:
Inflammation plays a key role in acute coronary syndromes (ACS). Toll-like receptors (TLR) on leucocytes mediate inflammation and immune responses. We characterized leucocytes and TLR expression within coronary thrombi and compared cytokine levels from the site of coronary occlusion with aortic blood (AB) in ACS patients.
Resumo:
Several studies have shown the presence of liver mitochondrial dysfunction during sepsis. TLR3 recognizes viral double-stranded RNA and host endogenous cellular mRNA released from damaged cells. TLR3 ligand amplifies the systemic hyperinflammatory response observed during sepsis and in sepsis RNA escaping from damaged tissues/cells may serve as an endogenous ligand for TLR3 thereby modulating immune responses. This study addressed the hypothesis that TLR3 might regulate mitochondrial function in cultured human hepatocytes. HepG2 cells were exposed to TLR-3 ligand (dsRNA--polyinosine-polycytidylic acid; Poly I:C) and mitochondrial respiration was measured. Poly I:C induced a reduction in maximal mitochondrial respiration of human hepatocytes which was prevented partially by preincubation with cyclosporine A (a mitochondrial permeability transition pore-opening inhibitor). Poly-I:C induced activation of NF-κB, and the mitochondrial dysfunction was accompanied by caspase-8 but not caspase-3 activation and by no major alterations in cellular or mitochondrial ultrastructure.
Resumo:
Toll-like receptors (TLR) recognize a variety of ligands, including pathogen-associated molecular patterns and link innate and adaptive immunity. Individual receptors can be up-regulated during infection and inflammation. We examined the expression of selected TLRs at the protein level in various types of renal disease.
Resumo:
Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8-/- IL-1RI-/- double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.
Resumo:
Toll-like receptors are pattern recognition receptors with which hosts recognize pathogen-associated molecular patterns (PAMP). This recognition process is translated rapidly into a meaningful defense reaction. This form of innate host defense is preserved in the animal kingdom: invertebrates heavily depend on it; higher vertebrates also have an adaptive immune system. Both adaptive and innate immune systems are intertwined in that the former also depends on an intact innate recognition and response system. Members of the TLR system cover recognition of parasitic, bacterial or viral germs. Due to the constraints imposed by the necessity to recognize PAMP and to interact with downstream signaling molecules, the TLR system is relatively conserved in evolution. Nevertheless, subtle species differences have been reported for several mammalian TLR members. Examples of this will be given. In all mammalian species investigated, part of the coding sequence is available for the most important TLR members, thus allowing study of expression of these TLR members in various tissues by reverse-transcription polymerase chain reaction in its classical (RT-PCR) and quantitative real time RT-PCR (qRT-PCR) form. In some species, the whole coding sequences of the most important or even all TLR members are known. This allows construction of cDNA and transfection of common host cells, thus permitting functional studies. Extensive investigations were devoted to the study of non-synonymous single nucleotide polymorphisms. In a few cases, expression of a given amino acid in the extracellular (ligand-binding) portion of TLR members could be associated with infectious diseases. This will be discussed below.
Resumo:
There is growing evidence that aberrant innate immune responses towards the bacterial flora of the gut play a role in the pathogenesis of canine inflammatory bowel disease (IBD). Toll-like receptors (TLR) play an important role as primary sensors of invading pathogens and have gained significant attention in human IBD as differential expression and polymorphisms of certain TLR have been shown to occur in ulcerative colitis (UC) and Crohn's disease (CD). The aim of the current study was to evaluate the expression of two TLR important for recognition of commensals in the gut. TLR2 and TLR4 mRNA expression in duodenal biopsies from dogs with IBD was measured and correlated with clinical and histological disease severity. Endoscopic duodenal biopsies from 20 clinical cases and 7 healthy control dogs were used to extract mRNA. TLR2 and TLR4 mRNA expression was assessed using quantitative real-time PCR. TLR2 mRNA expression was significantly increased in the IBD dogs compared to controls, whereas TLR4 mRNA expression was similar in IBD and control cases. In addition, TLR2 mRNA expression was mildly correlated with clinical severity of disease, however, there was no correlation between TLR2 expression and histological severity of disease.
Resumo:
Toll-like receptors (TLRs) are key receptors of the innate immune system which are expressed on immune and nonimmune cells. They are activated by both pathogen-associated molecular patterns and endogenous ligands. Activation of TLRs culminates in the release of proinflammatory cytokines, chemokines, and apoptosis. Ischaemia and ischaemia/reperfusion (I/R) injury are associated with significant inflammation and tissue damage. There is emerging evidence to suggest that TLRs are involved in mediating ischaemia-induced damage in several organs. Critical limb ischaemia (CLI) is the most severe form of peripheral arterial disease (PAD) and is associated with skeletal muscle damage and tissue loss; however its pathophysiology is poorly understood. This paper will underline the evidence implicating TLRs in the pathophysiology of cerebral, renal, hepatic, myocardial, and skeletal muscle ischaemia and I/R injury and discuss preliminary data that alludes to the potential role of TLRs in the pathophysiology of skeletal muscle damage in CLI.
Resumo:
http://www.ncbi.nlm.nih.gov/pubmed/23070056
Resumo:
THP-1 2A9, a subclone of the monocytoid cell line THP-1 and known to be exquisitely sensitive to LPS, was tested for TNF production following triggering by excess doses of TLR ligands. TLR2, TLR4 and TLR5 agonists, but neither TLR3 nor TLR9 agonists, induced TNF production. When used at lower concentrations, priming by calcitriol strongly influenced the sensitivity of cells to LPS and different TLR2 triggers (lipoteichoic acid (LTA), trispalmitoyl-cysteyl-seryl-lysyl-lysyl-lysyl-lysine (Pam3Cys) and peptidoglycan (PGN)). Priming by calcitriol failed to modulate TLR2 and TLR4 mRNA and cell surface expression of these receptors. TNF signals elicited by TLR2 agonists were blocked by the TLR-specific antibody 2392. CD14-specific antibodies showed variable effects. CD14-specific antibodies inhibited TNF induction by LTA. High concentrations partially inhibited TNF induction by Pam3Cys. The same antibodies failed to inhibit TNF induction by PGN. Thus, THP-1 2A9 cells respond by TNF production to some, but not all TLR agonists, and the wide variety of putative TLR2 agonists interact to variable degrees also with other cell-surface-expressed binding sites such as CD14. THP-1 2A9 cells might provide a model by which to investigate in more detail the interaction of pathogen-associated molecular patterns and monocytoid cell-surface-expressed pattern recognition receptors.
Resumo:
Background: Inflammatory bowel disease (IBD) is thought to result from a dysregulated interaction between the host immune system and commensal microflora. Toll-like receptors (TLRs) recognize microbe-associated molecular patterns (MAMPs), but their role in enteropathies in dogs is unknown. Hypothesis: That there is a dysregulation of TLRs recognizing bacterial MAMPs in dogs with IBD. Animals: Sixteen healthy beagles and 12 dogs with steroid-treated (ST) and 23 dogs with food-responsive (FR) diarrhea. Methods: Prospective, observational study. mRNA expression of canine TLR2, 4, and 9 was evaluated by quantitative real-time RT-PCR in duodenal and colonic biopsies obtained before and after standard therapy. Samples from control dogs were taken at necropsy, with additional biopsies of stomach, jejunum, ileum, and mesenteric lymph node in 6 dogs. Results: There were significant differences (P= .017) in expression of TLR2, 4, and 9 between the 6 sampled locations in healthy control dogs (lymph node > small intestine >/= colon). Before therapy, ST expressed more mRNA than control dogs for all 3 receptors (P < .05). There were no significant differences between pretreatment and posttreatment values, even though 32/35 dogs improved clinically. No associations were found when comparing receptor mRNA expression with either histology or clinical activity scores. Conclusions and Clinical Importance: Bacteria-responsive TLR2, 4, and 9 are upregulated in duodenal and colonic mucosa in IBD. This might lead to increased inflammation through interaction with the commensal flora. The absence of significant changes after therapy despite clinical improvement might point toward the existence of a genetic predisposition to IBD as described in human IBD.
Resumo:
BACKGROUND: Acne inversa (hidradenitis suppurativa) is a chronic inflammatory and cicatricial disorder that affects skin areas rich in apocrine glands and terminal hairs, such as perineum and axillae. The exact pathogenesis of the disease is not well understood and the mechanisms by which bacterial superinfection contributes to the disease progression are not clear. Toll-like receptors (TLRs) expressed by inflammatory cells play a crucial role in the innate immune response to bacteria. OBJECTIVES: We sought to investigate the role of TLR2 in the pathogenesis of acne inversa. METHODS: We investigated the expression of TLR2 using real-time polymerase chain reaction analysis and immunohistochemical stainings of tissue samples from patients with acne inversa. Furthermore, we phenotypically characterized the infiltrating cells and their expression of TLR2. RESULTS: Compared with normal skin, a highly increased in situ expression of TLR2 in acne inversa skin lesions was found at both the mRNA and the protein level. The most abundant cells in the dermal infiltrate of acne inversa were CD68+ macrophages, CD209+ dendritic cells (DCs) and CD3+ T cells. CD19+ B cells and CD56+ natural killer cells were found only in small numbers. Double staining with fluorescence-labelled antibodies showed that TLR2 was expressed by infiltrating macrophages (CD68+) and DCs (CD209+). Flow cytometric analysis of isolated infiltrating cells further confirmed surface expression of TLR2 by macrophages and DCs. CONCLUSIONS: These data indicate that the enhanced expression of TLR2 by infiltrating macrophages and DCs may contribute to the pathogenesis of inflammatory lesions of acne inversa.
Resumo:
BACKGROUND/AIMS: Genes encoding for some of the mitochondrial proteins are under the control of the transcriptional factor hypoxia inducible factor-1 alpha (HIF-1 alpha), which can accumulate under normoxic conditions in inflammatory states. The aim of this study was to evaluate the effects of cobalt chloride (CoCl(2), a hypoxia mimicking agent), tumour necrosis factor-alpha (TNF-alpha) and toll-like receptor (TLR) -2, -3 and -4 agonists on HIF-1 alpha accumulation, and further on HIF-1 alpha-mediated modulation of mitochondrial respiration in cultured human hepatocytes. METHODS: The human hepatoma cell line HepG2 was used in this study. Cells were treated with CoCl(2), TNF-alpha and TLR-2, -3 and -4 agonists. HIF-1 alpha was determined by Western blotting and mitochondrial respiration in stimulated cells by high-resolution respirometry. RESULTS: CoCl(2), TNF-alpha and TLR agonists induced the expression of HIF-1 alpha in a time-dependent fashion. TNF-alpha and CoCl(2), but not TLR agonists, induced a reduction in complex I-, II- and IV-dependent mitochondrial oxygen consumption. TNF-alpha-associated reduction of cellular oxygen consumption was abolished through inhibition of HIF-1 alpha activity by chetomin (CTM). Pretreatment with cyclosporine A prevented CoCl(2)-induced reduction of complex I- and II-dependent mitochondrial oxygen consumption and TNF-alpha-induced reduction of complex-I-dependent respiration, implicating the involvement of the mitochondrial permeability transition pore openings. TNF-alpha and TLR-2, -3 and -4 agonists induced the expression of vascular endothelial growth factor, which was partially abolished by the blockage of HIF-1 alpha with CTM. CONCLUSIONS: The data suggest that HIF-1 alpha modulates mitochondrial respiration during CoCl(2) and TNF-alpha stimulation, whereas it has no effect when induced with TLR-2, -3 and -4 agonists.