34 resultados para Tiopurina metil transferase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles' heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic alcohol consumption is a major risk factor for the development of chronic pancreatitis. However, chronic pancreatitis occurs only in a minority of heavy drinkers. This variability may be due to yet unidentified genetic factors. Several enzymes involved in the degradation of reactive oxidants and xenobiotics, such as glutathione-S-transferase P1 (GSTP1) and manganese-superoxide dismutase (MnSOD) reveal functional polymorphisms that affect the antioxidative capacity and may therefore modulate the development of chronic pancreatitis and long-term complications like endocrine and exocrine pancreatic insufficiency. Two functional polymorphisms of the MnSOD and the GSTP1 gene were assessed by polymerase chain reaction and restriction fragment length polymorphism in 165 patients with chronic alcoholic pancreatitis, 140 alcoholics without evidence of pancreatic disease and 160 healthy control subjects. The distribution of GSTP1 and MnSOD genotypes were in Hardy-Weinberg equilibrium in the total cohort. Genotype and allele frequencies for both genes were not statistically different between the three groups. Although genotype MnSOD Ala/Val was seemingly associated with the presence of exocrine pancreatic insufficiency, this subgroup was too small and the association statistically underpowered. None of the tested genotypes affected the development of endocrine pancreatic insufficiency. Polymorphisms of MnSOD and GSTP1 are not associated with chronic alcoholic pancreatitis. The present data emphasize the need for stringently designed candidate gene association studies with well-characterized cases and controls and sufficient statistical power to exclude chance observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila arginine methyl-transferase 4 (DART4) belongs to the type I class of arginine methyltransferases. It catalyzes the methylation of arginine residues to monomethylarginines and asymmetrical dimethylarginines. The DART4 sequence is highly similar to mammalian PRMT4/CARM1, and DART4 substrate specificity has been conserved, too. Recently it was suggested that DART4/Carmer functions in ecdysone receptor mediated apoptosis of the polytene larval salivary glands and an apparent up-regulation of DART4/Carmer mRNA levels before tissue histolysis was reported. Here we show that in Drosophila larvae, DART4 is mainly expressed in the imaginal disks and in larval brains, and to a much lesser degree in the polytene larval tissue such as salivary glands. In glands, DART4 protein is present in the cytoplasm and the nucleus. The nuclear signal emanates from the extrachromosomal domain and gets progressively restricted to the region of the nuclear lamina upon pupariation. Surprisingly, DART4 levels do not increase in salivary glands during pupariation, and overexpression of DART4 does not cause precautious cell death in the glands. Furthermore, over- and misexpression of DART4 under the control of the alpha tubulin promoter do not lead to any major problem in the life of a fly. This suggests that DART4 activity is regulated at the posttranslational level and/or that it acts as a true cofactor in vivo. We present evidence that nuclear localization of DART4 may contribute to its function because DART4 accumulation changes from a distribution with a strong cytoplasmic component during the transcriptional quiescence of the young embryo to a predominantly nuclear one at the onset of zygotic transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exact mechanism for capillary occlusion in diabetic retinopathy is still unclear, but increased leukocyte-endothelial cell adhesion has been implicated. We examined the possibility that posttranslational modification of surface O-glycans by increased activity of core 2 transferase (UDP-Glc:Galbeta1-3GalNAcalphaRbeta-N-acetylglucoaminyltr ansferase) is responsible for increased adhesion of leukocytes to vascular endothelium in diabetes. The mean activity of core 2 transferase in polymorphonuclear leukocytes isolated from type 1 and type 2 diabetic patients was higher compared with age-matched control subjects (1,638 +/- 91 [n = 42] vs. 249 +/- 35 pmol x h(-1) x mg(-1) protein [n = 24], P = 0.00013; 1,459 +/- 194 [n = 58] vs. 334 +/- 86 [n = 11], P = 0.01). As a group, diabetic patients with retinopathy had significantly higher mean activity of core 2 transferase compared with individuals with no retinopathy. There was a significant association between enzyme activity and severity of retinopathy in type 1 and type 2 diabetic patients. There was a strong correlation between activity of core 2 transferase and extent of leukocyte adhesion to cultured retinal capillary endothelial cells for diabetic patients but not for age-matched control subjects. Results from transfection experiments using human myelocytic cell line (U937) demonstrated a direct relationship between increased activity of core 2 transferase and increased binding to cultured endothelial cells. There was no relationship between activity of core 2 transferase and HbA(1c) (P = 0.8314), serum advanced glycation end product levels (P = 0.4159), age of the patient (P = 0.7896), and duration of diabetes (P = 0.3307). On the basis that branched O-glycans formed by the action of core 2 transferase participate in leukocyte adhesion, the present data suggest the involvement of this enzyme in increased leukocyte-endothelial cell adhesion and the pathogenesis of capillary occlusion in diabetic retinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholestasis with normal gamma glutamyl transferase characterizes functional deficiencies in the gene ABCB11, which encodes the bile salt export pump (BSEP), a liver-specific adenosine triphosphate (ATP)-binding cassette transporter. Here we report the case of a patient presenting with features of benign recurrent intrahepatic cholestasis associated with a heterozygous mutation in the ABCB11 gene. Immunohistochemistry showed a gradual decrease of BSEP from zone 1 to zone 3 of the liver lobule, suggesting that the mutation identified here may predispose patients to cholestasis through a delocalization process of BSEP at the lobular level. (HEPATOLOGY 2013;57:2539-2541).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) is implicated in cellular processes such as apoptosis and cell migration. Its acyl transferase activity cross-links certain proteins, among them transcription factors were described. We show here that the TG2 inhibitor KCC009 reversed resistance to tumor necrosis factor-related apoptosis-inducing factor (TRAIL) in lung cancer cells. Sensitization required upregulation of death receptor 5 (DR5) but not of death receptor 4. Upregulation of DR5 involved the first intron of the DR5 gene albeit it was independent from p53 and nuclear factor kappa B. In conclusion, inhibition of tissue transglutaminase provides an interesting strategy for sensitization to TRAIL-induced apoptosis in p53-deficient lung cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The histidine triad (HIT) superfamily comprises proteins that share the histidine triad motif, His-ϕ-His-ϕ-His-ϕ-ϕ, where ϕ is a hydrophobic amino acid. HIT proteins are ubiquitous in prokaryotes and eukaryotes. HIT proteins bind nucleotides and exert dinucleotidyl hydrolase, nucleotidylyl transferase or phosphoramidate hydrolase enzymatic activity. In humans, 5 families of HIT proteins are recognized. The accumulated epidemiological and experimental evidence indicates that two branches of the superfamily, the HINT (Histidine Triad Nucleotide Binding) members and FHIT (Fragile Histidine Triad), have tumor suppressor properties but a conclusive physiological role can still not be assigned to these proteins. Aprataxin forms another discrete branch of the HIT superfamily, is implicated in DNA repair mechanisms and unlike the HINT and FHIT members, a defective protein can be conclusively linked to a disease, ataxia with oculomotor apraxia type 1. The scavenger mRNA decapping enzyme, DcpS, forms a fourth branch of the HIT superfamily. Finally, the GalT enzymes, which exert specific nucleoside monophosphate transferase activity, form a fifth branch that is not implicated in tumorigenesis. The molecular mechanisms by which the HINT and FHIT proteins participate in bioenergetics of cancer are just beginning to be unraveled. Their purported actions as tumor suppressors are highlighted in this review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Rheumatoid arthritis (RA) usually improves during pregnancy and recurs postpartum. Fetal cells and cell-free DNA reach the maternal circulation during normal pregnancy. The present study investigated dynamic changes in levels of fetal DNA in serum from women with RA and inflammatory arthritis during and after pregnancy to test the hypothesis that the levels of circulating fetal DNA correlate with arthritis improvement. METHODS: Twenty-five pregnant patients were prospectively studied. A real-time quantitative polymerase chain reaction panel targeting unshared, paternally transmitted HLA sequences, a Y chromosome-specific sequence, or an insertion sequence within the glutathione S-transferase M1 gene was used to measure cell-free fetal DNA. Results were expressed as fetal genomic equivalents per milliliter (gE/ml) of maternal serum. Physical examinations were conducted during and after pregnancy. RESULTS: Levels of fetal DNA in women with improvement in or remission of arthritis were higher than those in women with active disease, especially in the third trimester. Overall, an inverse relationship between serum fetal DNA levels and disease activity was observed (P < 0.001). Serum fetal DNA increased with advancing gestation, reaching median levels of 24 gE/ml (range 0-334), 61 gE/ml (range 0-689), and 199 gE/ml (range 0-2,576) in the first, second, and third trimesters, respectively, with fetal DNA clearance observed postpartum. Arthritis improvement was initially noted in the first trimester for most patients, increased further or was sustained with advancing gestation, and was active postpartum. CONCLUSION: Changes in serum fetal DNA levels correlated with arthritis improvement during pregnancy and recurrence postpartum. Immunologic mechanisms by which pregnancy might modulate RA activity are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear receptors (NR), such as constitutive androstane receptor (CAR), pregnane X receptor (PXR) and peroxisome proliferator-associated receptors alpha and gamma (PPARalpha, PPARgamma) are mediators of inflammation and may be involved in inflammatory bowel disease (IBD) and food responsive diarrhea (FRD) of dogs. The present study compared mRNA abundance of NR and NR target genes [multi drug-resistance gene-1 (MDR1), multiple drug-resistance-associated proteins (MRD2, MRD3), cytochrome P450 (CYP3A12), phenol-sulfating phenol sulfotransferase (SULT1A1) and glutathione-S-transferase (GST A3-3)] in biopsies obtained from duodenum and colon of dogs with IBD and FRD and healthy control dogs (CON; n=7 per group). Upon first presentation of dogs, mRNA levels of PPARalpha, PPARgamma, CAR, PXR and RXRalpha in duodenum as well as PPARgamma, CAR, PXR and RXRalpha in colon were not different among groups (P>0.10). Although mRNA abundance of PPARalpha in colon of dogs with FRD was similar in both IBD and CON (P>0.10), PPARalpha mRNA abundance was higher in IBD than CON (P<0.05). Levels of mRNA of MDR1 in duodenum were higher in FRD than IBD (P<0.05) or CON (P<0.001). Compared with CON, abundances of mRNA for MRP2, CYP3A12 and SULT1A1 were higher in both FRD and IBD than CON (P<0.05). Differences in mRNA levels of PPARalpha and MRP2 in colon and MDR1, MRP2, CYP3A12 and SULT1A1 in duodenum may be indicative for enteropathy in FRD and (or) IBD dogs relative to healthy dogs. More importantly, increased expression of MDR1 in FRD relative to IBD in duodenum may be a useful diagnostic marker to distinguish dogs with FRD from dogs with IBD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After birth the development of appropriate detoxification mechanisms is important. Nuclear receptors (NR), such as constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor-alpha (PPARalpha), retinoid receptors (RAR, RXR), and NR target genes are involved in the detoxification of exogenous and endogenous substances. We quantified abundances of hepatic mRNA of NR and several NR target genes (cytochromes, CYP; cytochrome P450 reductase, CPR; UDP-glucuronosyl transferase, UDP) in calves at different ages. Gene expression was quantified by real-time RT-PCR. Abundance of mRNA of CAR and PXR increased from low levels at birth in pre-term calves (P0) and full-term calves (F0) to higher levels in 5-day-old calves (F5) and in 159-day-old veal calves (F159), whereas mRNA levels of PPARalpha did not exhibit significant ontogenetic changes. RARbeta mRNA levels were higher in F5 and F159 than in F0, whereas no age differences were observed for RARalpha levels. Levels of RXRalpha and RXRbeta mRNA were lower in F5 than in P0 and F0. Abundance of CYP2C8 and CYP3A4 increased from low levels in P0 and F0 to higher levels in F5 and to highest levels in F159. Abundance of CPR was transiently decreased in F0 and F5 calves. Levels of UGT1A1 mRNA increased from low levels in P0 and F0 to maximal level in F5 and F159. In conclusion, mRNA levels of NR and NR target genes exhibited ontogenetic changes that are likely of importance for handling of xeno- and endobiotics with increasing age.