53 resultados para Tetrahydropiridines derivatives


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pH-dependent membrane adsorption and distribution of three chlorin derivatives, chlorin e6 (CE), rhodin G7 (RG), and monoaspartyl-chlorin e6 (MACE), in the physiological pH range (pH 6-8) were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. The chlorin derivatives were characterized with respect to their aggregation behavior, the pK(a) values of individual carboxylate groups, the extent of membrane adsorption, and their flip-flop rates across the bilayer membrane for pH 6-8. External membrane adsorption was found to be lower for RG than for CE and MACE. Both electrostatic interactions and the extent of aggregation seemed to be the main determinants of membrane adsorption. Rate constants for chlorin transfer across the membrane were found to correlate strongly with the pH of the surrounding medium, in particular, for CE and RG. In acidic solution, CE and RG transfer across the membrane was strongly accelerated, and in basic solution, all compounds were retained, mostly in the outer monolayer. In contrast, MACE flip-flop across the membrane remained very low even at pH 6. The protonation of ionizable groups is suggested to be a major determinant of chlorin transfer rates across the bilayer. pK(a) values of CE and RG were found to be between 6 and 8, and two of the carboxylate groups in MACE had pK(a) values below 6. For CE and RG, the kinetic profiles at acidic pH indicated that the initial fast membrane distribution was followed by secondary steps that are discussed in this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, radiolabeling, and initial evaluation of new silicon-fluoride acceptor (SiFA) derivatized octreotate derivatives is reported. So far, the main drawback of the SiFA technology for the synthesis of PET-radiotracers is the high lipophilicity of the resulting radiopharmaceutical. Consequently, we synthesized new SiFA-octreotate analogues derivatized with Fmoc-NH-PEG-COOH, Fmoc-Asn(Ac?AcNH-?-Glc)-OH, and SiFA-aldehyde (SIFA-A). The substances could be labeled in high yields (38 ± 4%) and specific activities between 29 and 56 GBq/?mol in short synthesis times of less than 30 min (e.o.b.). The in vitro evaluation of the synthesized conjugates displayed a sst2 receptor affinity (IC?? = 3.3 ± 0.3 nM) comparable to that of somatostatin-28. As a measure of lipophilicity of the conjugates, the log P(ow) was determined and found to be 0.96 for SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate and 1.23 for SiFA-Asn(AcNH-?-Glc)-Tyr³-octreotate, which is considerably lower than for SiFA-Tyr³-octreotate (log P(ow) = 1.59). The initial in vivo evaluation of [¹?F]SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate revealed a significant uptake of radiotracer in the tumor tissue of AR42J tumor-bearing nude mice of 7.7% ID/g tissue weight. These results show that the high lipophilicity of the SiFA moiety can be compensated by applying hydrophilic moieties. Using this approach, a tumor-affine SiFA-containing peptide could successfully be used for receptor imaging for the first time in this proof of concept study.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ω3-polyunsaturated fatty acids (ω3-PUFAs) are known to exert anti-inflammatory effects in various disease models although their direct targets are only poorly characterized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new total synthesis of the marine macrolide (-)-zampanolide (1) and the structurally and stereochemically related non-natural levorotatory enantiomer of (+)-dactylolide (2), that is, ent-2, has been developed. The synthesis features a high-yielding, selective intramolecular Horner-Wadsworth-Emmons (HWE) reaction to close the 20-membered macrolactone ring of 1 and ent-2. The β-keto phosphonate/aldehyde precursor for the ring-closure reaction was obtained by esterification of a ω-diethylphosphono carboxylic acid fragment and a secondary alcohol fragment incorporating the THP ring that is embedded in the macrocyclic core structure of 1 and ent-2. THP ring formation was accomplished through a segment coupling Prins-type cyclization. Employing the same overall strategy, 13-desmethylene-ent-2 as well as the monocyclic desTHP derivatives of 1 and ent-2 were prepared. Synthetic 1 inhibited human cancer cell growth in vitro with nM IC(50) values, while ent-2, which lacks the diene-containing hemiaminal-linked side chain of 1, is 25- to 260-fold less active. 13-Desmethylene-ent-2 as well as the reduced versions of ent-2 and 13-desmethylene-ent-2 all showed similar cellular activity as ent-2 itself. The same activity level was attained by the monocyclic desTHP derivative of 1. Oxidation of the aldehyde functionality of ent-2 gave a carboxylic acid that was converted into the corresponding N-hexyl amide. The latter showed only μM antiproliferative activity, thus being several hundred-fold less potent than 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coumarins are a large family of natural and synthetic compounds exerting different pharmacological effects, including cytotoxic, anti-inflammatory or antimicrobial. In the present communication we report the synthesis of a series of 12 diversely substituted 4-oxycoumarin derivatives including methoxy substituted 4-hydroxycoumarins, methyl, methoxy or unsubstituted 3-aryl-4-hydroxycoumarins and 4-benzyloxycoumarins and their anti-proliferative effects on breast adenocarcinoma cells (MCF-7), human promyelocytic leukemia cells (HL-60), human histiocytic lymphoma cells (U937) and mouse neuroblastoma cells (Neuro2a). The most potent bioactive molecule was the 4-hydroxy-5,7-dimethoxycoumarin (compound 1) which showed similar potency (IC(50) 0.2-2 μM) in all cancer cell lines tested. This non-natural product reveals a simple bioactive scaffold which may be exploited in further studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N,N'-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB(2) inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A-C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB(2) inverse agonists with the highest CB(2) binding affinity (CB(2)K(i) of 22-85 nM, EC(50) of 4-28 nM) and best selectivity (CB(1)/CB(2) of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 μM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent.