46 resultados para Statistics as Topic
Resumo:
Background Many medical exams use 5 options for multiple choice questions (MCQs), although the literature suggests that 3 options are optimal. Previous studies on this topic have often been based on non-medical examinations, so we sought to analyse rarely selected, 'non-functional' distractors (NF-D) in high stakes medical examinations, and their detection by item authors as well as psychometric changes resulting from a reduction in the number of options. Methods Based on Swiss Federal MCQ examinations from 2005-2007, the frequency of NF-D (selected by <1% or <5% of the candidates) was calculated. Distractors that were chosen the least or second least were identified and candidates who chose them were allocated to the remaining options using two extreme assumptions about their hypothetical behaviour: In case rarely selected distractors were eliminated, candidates could randomly choose another option - or purposively choose the correct answer, from which they had originally been distracted. In a second step, 37 experts were asked to mark the least plausible options. The consequences of a reduction from 4 to 3 or 2 distractors - based on item statistics or on the experts' ratings - with respect to difficulty, discrimination and reliability were modelled. Results About 70% of the 5-option-items had at least 1 NF-D selected by <1% of the candidates (97% for NF-Ds selected by <5%). Only a reduction to 2 distractors and assuming that candidates would switch to the correct answer in the absence of a 'non-functional' distractor led to relevant differences in reliability and difficulty (and to a lesser degree discrimination). The experts' ratings resulted in slightly greater changes compared to the statistical approach. Conclusions Based on item statistics and/or an expert panel's recommendation, the choice of a varying number of 3-4 (or partly 2) plausible distractors could be performed without marked deteriorations in psychometric characteristics.
Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics
Resumo:
Locally affine (polyaffine) image registration methods capture intersubject non-linear deformations with a low number of parameters, while providing an intuitive interpretation for clinicians. Considering the mandible bone, anatomical shape differences can be found at different scales, e.g. left or right side, teeth, etc. Classically, sequential coarse to fine registration are used to handle multiscale deformations, instead we propose a simultaneous optimization of all scales. To avoid local minima we incorporate a prior on the polyaffine transformations. This kind of groupwise registration approach is natural in a polyaffine context, if we assume one configuration of regions that describes an entire group of images, with varying transformations for each region. In this paper, we reformulate polyaffine deformations in a generative statistical model, which enables us to incorporate deformation statistics as a prior in a Bayesian setting. We find optimal transformations by optimizing the maximum a posteriori probability. We assume that the polyaffine transformations follow a normal distribution with mean and concentration matrix. Parameters of the prior are estimated from an initial coarse to fine registration. Knowing the region structure, we develop a blockwise pseudoinverse to obtain the concentration matrix. To our knowledge, we are the first to introduce simultaneous multiscale optimization through groupwise polyaffine registration. We show results on 42 mandible CT images.