24 resultados para State Library of Massachusetts
Resumo:
Learned irrelevance (LIrr) refers to a form of selective learning that develops as a result of prior noncorrelated exposures of the predicted and predictor stimuli. In learning situations that depend on the associative link between the predicted and predictor stimuli, LIrr is expressed as a retardation of learning. It represents a form of modulation of learning by selective attention. Given the relevance of selective attention impairment to both positive and cognitive schizophrenia symptoms, the question remains whether LIrr impairment represents a state (relating to symptom manifestation) or trait (relating to schizophrenia endophenotypes) marker of human psychosis. We examined this by evaluating the expression of LIrr in an associative learning paradigm in (1) asymptomatic first-degree relatives of schizophrenia patients (SZ-relatives) and in (2) individuals exhibiting prodromal signs of psychosis ("ultrahigh risk" [UHR] patients) in each case relative to demographically matched healthy control subjects. There was no evidence for aberrant LIrr in SZ-relatives, but LIrr as well as associative learning were attenuated in UHR patients. It is concluded that LIrr deficiency in conjunction with a learning impairment might be a useful state marker predictive of psychotic state but a relatively weak link to a potential schizophrenia endophenotype.
Resumo:
The explorative coordination chemistry of the bridging ligand TTF-PPB is presented. Its strong binding ability to Co(II) and then to Ni(II) or Cu(II) in the presence of hexafluoroacetylacetonate (hfac(-)), forming new mono-and dinuclear complexes 1-3, is described. X-ray crystallographic studies have been conducted in the case of the free ligand TTF-PPB as well as its complexes [Co(TTF-PPB)(hfac)(2)] (1) and [Co(hfac)(2)(mu-TTF-PPB)Ni(hfac)(2)] (2). Each metal ion is bonded to two bidentate hfac-anions through their oxygen atoms and two nitrogen atoms of the PPB moiety with a distorted octahedral coordination geometry. Specifically, nitrogen donor atoms of TTF-PPB adopt a cis-coordination but not in the equatorial plane, which is quite rare. Electronic absorption, photoinduced intraligand charge transfer ((1)ILCT), and electrochemical behaviour of 1-3 have been investigated. UV-Vis spectroscopy shows very strong bands in the UV region consistent with ligand centred pi-pi* transitions and an intense broad band in the visible region corresponding to a spin-allowed pi-pi* (1)ILCT transition. Upon coordination, the (1)ILCT band is bathochromically shifted by 3100, 6100 and 5900 cm(-1) on going from 1 to 3. The electrochemical studies reveal that all of them undergo two reversible oxidation and one reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the PPB unit, respectively.
Resumo:
We present ab initio quantum calculation of the optical properties of formamide in vapor phase and in water solution. We employ time dependent density functional theory for the isolated molecule and many-body perturbation theory methods for the system in solution. An average over several molecular dynamics snapshots is performed to take into account the disorder of the liquid. We find that the excited stateproperties of the gas-phase formamide are strongly modified by the presence of the water solvent: the geometry of the molecule is distorted and the electronic and optical properties are severely modified. The important interaction among the formamide and the water molecules forces us to use fully quantum methods for the calculation of the excited stateproperties of this system. The excitonic wave function is localized both on the solute and on part of the solvent.
Resumo:
Steady-state blood concentrations of (R)- methadone (i.e., the active form), (S)-methadone, and (R,S)-methadone were measured before and after introduction of paroxetine 20 mg/day during a mean period of 12 days in 10 addict patients in methadone maintenance treatment. Eight patients were genotyped as CYP2D6 homozygous extensive metabolizers (EMs) and two patients as poor metabolizers (PMs). Paroxetine significantly increased concentrations of both enantiomers of methadone in the whole group (mean increase for (R)-methadone +/- SD, 26 +/- 32%; range, -14% to +83%, p = 0.032; for (S)-methadone, 49 +/- 51%; range, -29% to +137%, p = 0.028; for (R,S)-methadone, 35 +/- 41%; range, -20% to +112%, p = 0.032) and in the group of eight EMs (mean increase, 32%, p = 0.036; 53%, p = 0.028; and 42%, p = 0.036, for (R)-methadone, (S)-methadone, and (R,S)-methadone, respectively). On the other hand, in the two PMs, (S)-methadone but not (R)-methadone concentrations were increased by paroxetine (mean increases of 36% and 3%, respectively). Paroxetine is a strong CYP2D6 inhibitor, and these results confirm previous studies showing an involvement of CYP2D6 in methadone metabolism with a stereoselectivity toward the (R)-enantiomer. Because paroxetine is a mild inhibitor of CYP1A2, CYP2C9, CYP2C19, and CYP3A4, increase of (S)-methadone concentrations in both EMs and PMs could be mediated by inhibition of any of these isozymes.
Resumo:
We describe the steady-state function of the ubiquitous mammalian Na/H exchanger (NHE)1 isoform in voltage-clamped Chinese hamster ovary cells, as well as other cells, using oscillating pH-sensitive microelectrodes to quantify proton fluxes via extracellular pH gradients. Giant excised patches could not be used as gigaseal formation disrupts NHE activity within the patch. We first analyzed forward transport at an extracellular pH of 8.2 with no cytoplasmic Na (i.e., nearly zero-trans). The extracellular Na concentration dependence is sigmoidal at a cytoplasmic pH of 6.8 with a Hill coefficient of 1.8. In contrast, at a cytoplasmic pH of 6.0, the Hill coefficient is <1, and Na dependence often appears biphasic. Results are similar for mouse skin fibroblasts and for an opossum kidney cell line that expresses the NHE3 isoform, whereas NHE1(-/-) skin fibroblasts generate no proton fluxes in equivalent experiments. As proton flux is decreased by increasing cytoplasmic pH, the half-maximal concentration (K(1/2)) of extracellular Na decreases less than expected for simple consecutive ion exchange models. The K(1/2) for cytoplasmic protons decreases with increasing extracellular Na, opposite to predictions of consecutive exchange models. For reverse transport, which is robust at a cytoplasmic pH of 7.6, the K(1/2) for extracellular protons decreases only a factor of 0.4 when maximal activity is decreased fivefold by reducing cytoplasmic Na. With 140 mM of extracellular Na and no cytoplasmic Na, the K(1/2) for cytoplasmic protons is 50 nM (pH 7.3; Hill coefficient, 1.5), and activity decreases only 25% with extracellular acidification from 8.5 to 7.2. Most data can be reconstructed with two very different coupled dimer models. In one model, monomers operate independently at low cytoplasmic pH but couple to translocate two ions in "parallel" at alkaline pH. In the second "serial" model, each monomer transports two ions, and translocation by one monomer allosterically promotes translocation by the paired monomer in opposite direction. We conclude that a large fraction of mammalian Na/H activity may occur with a 2Na/2H stoichiometry.