39 resultados para Species Identification
Resumo:
Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of < or =10(2) CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples.
Resumo:
The European trout (Salmo trutta species complex) is genetically very diverse consisting of five distinct mitochondrial lineages that probably originated in the Pleistocene. Here, we describe a novel pyrosequencing protocol to generate two short sequence reads from the mitochondrial control region, which allow the unambiguous identification of all five lineages. The approach was found to be easily transferable between laboratories and should be a valuable tool for the assessment of genetic diversity in trout. Pyrosequencing-based assays for molecular species identification are expected to be generally useful whenever multiple positions in a short DNA sequence need to be assessed.
Resumo:
Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis are oral pathogens from the family Bacteroidaceae, regularly isolated from cases of gingivitis and periodontitis. In this study, the phylogenetic variability of these three bacterial species was investigated by means of 16S rRNA (rrs) gene sequence comparisons of a set of epidemiologically and geographically diverse isolates. For each of the three species, the rrs gene sequences of 11 clinical isolates as well as the corresponding type strains was determined. Comparison of all rrs sequences obtained with those of closely related species revealed a clear clustering of species, with only a little intraspecies variability but a clear difference in the rrs gene with respect to the next related taxon. The results indicate that the three species form stable, homogeneous genetic groups, which favours an rrs-based species identification of these oral pathogens. This is especially useful given the 7% sequence divergence between Prevotella intermedia and Prevotella nigrescens, since phenotypic distinction between the two Prevotella species is inconsistent or involves techniques not applicable in routine identification.
Resumo:
In order to understand and protect ecosystems, local gene pools need to be evaluated with respect to their uniqueness. Cryptic species present a challenge in this context because their presence, if unrecognized, may lead to serious misjudgement of the distribution of evolutionarily distinct genetic entities. In this study, we describe the current geographical distribution of cryptic species of the ecologically important stream amphipod Gammarus fossarum (types A, B and C). We use a novel pyrosequencing assay for molecular species identification and survey 62 populations in Switzerland, plus several populations in Germany and eastern France. In addition, we compile data from previous publications (mainly Germany). A clear transition is observed from type A in the east (Danube and Po drainages) to types B and, more rarely, C in the west (Meuse, Rhone, and four smaller French river systems). Within the Rhine drainage, the cryptic species meet in a contact zone which spans the entire G. fossarum distribution range from north to south. This large-scale geographical sorting indicates that types A and B persisted in separate refugia during Pleistocene glaciations. Within the contact zone, the species rarely co-occur at the same site, suggesting that ecological processes may preclude long-term coexistence. The clear phylogeographical signal observed in this study implies that, in many parts of Europe, only one of the cryptic species is present.
Resumo:
The diagnostic yield of prosthetic joint-associated infection is hampered by the phenotypic change of bacteria into a sessile and resistant form, also called biofilm. With sonication, adherent bacteria can be dislodged from the prosthesis. Species identification may be difficult because of their variations in phenotypic appearance and biochemical reaction. We have studied the phenotypic, genotypic, and biochemical properties of Escherichia coli variants isolated from a periprosthetic joint infection. The strains were collected from synovial fluid, periprosthetic tissue, and fluid from the explanted and sonicated prosthesis. Isolates from synovial fluid revealed a normal phenotype, whereas a few variants from periprosthetic tissue and all isolates from sonication fluid showed different morphological features (including small-colony variants). All isolates from sonication fluid were beta-galactosidase negative and nonmotile; most were indole negative. Because of further variations in biochemical properties, species identification was false or not possible in 50% of the isolates included in this study. In contrast to normal phenotypes, variants were resistant to aminoglycosides. Typing of the isolates using pulsed-field gel electrophoresis yielded nonidentical banding patterns, but all strains were assigned to the same clonal origin when compared with 207 unrelated E. coli isolates. The bacteria were repeatedly passaged on culture media and reanalyzed. Thereafter, most variants reverted to normal phenotype and regained their motility and certain biochemical properties. In addition, some variants displayed aminoglycoside susceptibility after reversion. Sonication of an explanted prosthesis allows insight into the lifestyle of bacteria in biofilms. Since sonication fluid also reveals dislodged sessile forms, species identification of such variants may be misleading.
Resumo:
Semen collected from clinically healthy bulls at an artificial insemination centre was examined for bacterial diversity. While bacteria that are normally present in the common flora of bovine semen were absent, such as Mycoplasma sp., Proteus sp. and Corynebacterium sp., all semen samples contained an unusually high number of Pseudomonas aeruginosa strains. Analysis via pulsed field gel electrophoresis demonstrated that one particular P. aeruginosa strain, present in a sealed bottle of lubricant, was widespread in bull semen. This strain was shown to secrete substances that inhibited both the growth of bacteria constituting the normal bull sperm flora and the motility of spermatozoa in vitro. This study demonstrated that commercially available lubricants might contain bacteria that can spread amongst breeding bulls and affect the quality of semen. Bacteriological controls and species' identification are necessary at several production levels, including lubricants and extenders, to ensure high semen quality and avoid the spread of pathogens.
Resumo:
The incidence of human brucellosis in Kyrgyzstan has been increasing in the last years and was identified as a priority disease needing most urgent control measures in the livestock population. The latest species identification of Brucella isolates in Kyrgyzstan was carried out in the 1960s and investigated the circulation of Brucella abortus, B. melitensis, B. ovis, and B. suis. However, supporting data and documentation of that experience are lacking. Therefore, typing of Brucella spp. and identification of the most important host species are necessary for the understanding of the main transmission routes and to adopt an effective brucellosis control policy in Kyrgyzstan. Overall, 17 B. melitensis strains from aborted fetuses of sheep and cattle isolated in the province of Naryn were studied. All strains were susceptible to trimethoprim-sulfamethoxazole, gentamicin, rifampin, ofloxacin, streptomycin, doxycycline, and ciprofloxacin. Multilocus variable number tandem repeat analysis showed low genetic diversity. Kyrgyz strains seem to be genetically associated with the Eastern Mediterranean group of the Brucella global phylogeny. We identified and confirmed transmission of B. melitensis to cattle and a close genetic relationship between B. melitensis strains isolated from sheep sharing the same pasture.
Resumo:
Bovine tuberculosis (bTB) caused by Mycobacterium bovis or M. caprae has recently (re-) emerged in livestock and wildlife in all countries bordering Switzerland (CH) and the Principality of Liechtenstein (FL). Comprehensive data for Swiss and Liechtenstein wildlife are not available so far, although two native species, wild boar (Sus scrofa) and red deer (Cervus elaphus elaphus), act as bTB reservoirs elsewhere in continental Europe. Our aims were (1) to assess the occurrence of bTB in these wild ungulates in CH/FL and to reinforce scanning surveillance in all wild mammals; (2) to evaluate the risk of a future bTB reservoir formation in wild boar and red deer in CH/FL. Tissue samples collected from 2009 to 2011 from 434 hunted red deer and wild boar and from eight diseased ungulates with tuberculosis-like lesions were tested by direct real-time PCR and culture to detect mycobacteria of the Mycobacterium tuberculosis complex (MTBC). Identification of suspicious colonies was attempted by real-time PCR, genotyping and spoligotyping. Information on risk factors for bTB maintenance within wildlife populations was retrieved from the literature and the situation regarding identified factors was assessed for our study areas. Mycobacteria of the MTBC were detected in six out of 165 wild boar (3.6%; 95% CI: 1.4-7.8) but none of the 269 red deer (0%; 0-1.4). M. microti was identified in two MTBC-positive wild boar, while species identification remained unsuccessful in four cases. Main risk factors for bTB maintenance worldwide, including different causes of aggregation often resulting from intensive wildlife management, are largely absent in CH and FL. In conclusion, M. bovis and M. caprae were not detected but we report for the first time MTBC mycobacteria in Swiss wild boar. Present conditions seem unfavorable for a reservoir emergence, nevertheless increasing population numbers of wild ungulates and offal consumption may represent a risk.
Resumo:
The primary isolation of a Mycobacterium sp. of the Mycobacterium tuberculosis complex from an infected animal provides a definitive diagnosis of tuberculosis. However, as Mycobacterium bovis and Mycobacterium caprae are difficult to isolate, particularly for animals in the early stages of disease, success is dependent on the optimal performance of all aspects of the bacteriological process, from the initial choice of tissue samples at post-mortem examination or clinical samples, to the type of media and conditions used to cultivate the microorganism. Each step has its own performance characteristics, which can contribute to sensitivity and specificity of the procedure, and may need to be optimized in order to achieve the gold standard diagnosis. Having isolated the slow-growing mycobacteria, species identification and fine resolution strain typing are keys to understanding the epidemiology of the disease and to devise strategies to limit transmission of infection. New technologies have emerged that can now even discriminate different isolates from the same animal. In this review we highlight the key factors that contribute to the accuracy of bacteriological diagnosis of M. bovis and M. caprae, and describe the development of advanced genotyping techniques that are increasingly used in diagnostic laboratories for the purpose of supporting detailed epidemiological investigations.
Resumo:
For the first time, we analyzed the clonality and susceptibility of Burkholderia cepacia complex isolates (n=55) collected during 1998-2013 from 44 Swiss cystic fibrosis (CF)-patients. B. cenocepacia (n=28) and B. multivorans (n=14) were mainly of sequence type (ST) 833 and ST874, respectively; B. contaminans isolates were of ST102. Overall, the following MIC50/90s (mg/l) were obtained: piperacillin/tazobactam (≤ 4/≥ 128), ticarcillin/clavulanate (≥ 256/≥256), ceftazidime (2/≥ 32), aztreonam (16/≥ 32), meropenem (2/8), tobramycin (8/≥ 16), minocycline (≤ 1/16), levofloxacin (≤ 0.5/≥ 16), and trimethoprim/sulfamethoxazole (≤ 0.5/4). This is the first survey providing information on the clonality of Bcc detected in Switzerland. Species identification and antimicrobial susceptibility tests should always be routinely performed to adapt more targeted therapies.
Resumo:
Intestinal infections with Toxocara cati and Toxocara canis in their definitive host (felids and canids, respectively) are diagnosed by egg identification in faeces using coproscopical techniques. The Toxocara species is assumed to comply with the species from which the examined faeces were obtained, i.e. T. cati in cats and T. canis in dogs. We isolated and measured Toxocara eggs from faecal samples of 36 cats and 35 dogs from Switzerland and identified the Toxocara species by PCR. Amongst the isolates originating from dogs, 24 (68.5%) were determined as T. canis and 11 (31.5%) as T. cati. In all samples originating from cats, only T. cati was identified. Based on PCR identification, eggs of T. canis (n=241) and T. cati (n=442) were measured, revealing statistically significant different (p<0.001) mean sizes of 62.3 by 72.7 mum for T. cati and 74.8 by 86.0 mum for T. canis eggs. Considering that coprophagy is not unusual for dogs, a considerable percentage of Toxocara infections coproscopically diagnosed in dogs, as well as assumptions on anthelminthic resistance in regularly treated dogs, might in fact relate to intestinal passages of eggs following the uptake of other animals' faeces.
Resumo:
Two feline hemotropic mycoplasma spp. (aka hemoplasma) have previously been recognized. We recently discovered a third novel species in a cat with hemolytic anemia, designated 'Candidatus Mycoplasma turicensis', which is closely related to rodent haemoplasmas. This novel species induced anemia after experimental transmission to two SPF cats. Three quantitative real-time PCR assays were newly designed and applied to an epidemiological study surveying the Swiss pet cat population. Blood samples from 713 healthy and ill cats were analyzed. Up to 104 parameters per cat (detailed questionnaire, case history, laboratory parameters and retroviral infections) were evaluated. 'Candidatus Mycoplasma haemominutum' infection was more prevalent (8.5%) than Mycoplasma haemofelis (0.5%) and 'Candidatus Mycoplasma turicensis' (1%). Hemoplasma infections were associated with male gender, outdoor access, and old age, but not with disease or anemia. Infections were more frequently found in the South and West of Switzerland. Several hemoplasma infected cats, some acutely infected, others co-infected with FIV or FeLV, showed hemolytic anemia indicating that additional factors might play a role in the pathogenesis of the disease.