32 resultados para Solar radiation pressure
Resumo:
Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.
Resumo:
The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009–2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft’s solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which substantially reduces the spurious signals in the geocenter coordinate z (by about a factor of 2–6), reduces the orbit misclosures at the day boundaries by about 10 %, slightly improves the consistency of the estimated ERPs with those of the IERS 08 C04 Earth rotation series, and substantially reduces the systematics in the SLR validation of the GNSS orbits.
Resumo:
The indirect solar radiation pressure caused by reflected or re-emitted radiation by the Earth’s surface is an important non-gravitational force perturbing the orbits of geodetic satellites (Rubincam and Weiss, 1986; Martin and Rubincam, 1996). In the case of LAGEOS this acceleration is of the order of 15% of the direct solar radiation pressure. Therefore, Earth radiation pressure has a non-negligible impact not only on LAGEOS orbits, but also on the SLR-derived terrestrial reference frame. We investigate the impact of the Earth radiation pressure on LAGEOS orbits and on the SLR-derived parameters. Earth radiation pressure has a remarkable impact on the semi-major axes of the LAGEOS satellites, causing a systematic reduction of 1.5 mm. The infrared Earth radiation causes a reduction of about 1.0 mm and the Earth’s reflectivity of 0.5 mm of the LAGEOS’ semi-major axes. The global scale defined by the SLR network is changed by 0.07 ppb, when applying Earth radiation pressure. The resulting station heights differ by 0.5-0.6 mm in the solution with and without Earth radiation pressure. However, when range biases are estimated, the height differences are absorbed by the range biases, and thus, the station heights are not shifted.
Resumo:
To date, the radiative impact of dust and the Sahar an air layer (SAL) on North Atlantic hurricane activity is not yet known. According to previous studies, dust stabilizes the atmosphere due to absorption of solar radiation but thus shifts convection to regions more conducive for hurricane genesis. Here we analyze differences in hurricane genesis and frequency from ensemble sensitivity simulations with radiatively active and inactive dust in the aerosol-climate model ECHAM6-HAM. We investigate dust burden and other hurricane-related variables and determine their influence on disturbances which develop into hurricanes (developing disturbances, DDs) and those which do not (nondeveloping disturbances, NDDs). Dust and the SAL are found to potentially have both inhibiting and supporting influences on background conditions for hurricane genesis. A slight southward shift of DDs is determined when dust is active as well as a significant warming of the SAL, which leads to a strengthening of the vertical circulation associated with the SAL. The dust burden of DDs is smaller in active dust simulations compared to DDs in simulations with inactive dust, while NDDs contain more dust in active dust simulations. However, no significant influence of radiatively active dust on other variables in DDs and NDDs is found. Furthermore, no substantial change in the DD and NDD frequency due to the radiative effects of dust can be detected.
Resumo:
Context. The abundance of deuterium in the interstellar gas in front of the Sun gives insight into the processes of filtration of neutral interstellar species through the heliospheric interface and potentially into the chemical evolution of the Galactic gas. Aims: We investigate the possibility of detection of neutral interstellar deuterium at 1 AU from the Sun by direct sampling by the Interstellar Boundary Explorer (IBEX). Methods: Using both previous and the most recent determinations of the flow parameters of neutral gas in the local interstellar cloud (LIC) and an observation-based model of solar radiation pressure and ionization in the heliosphere, we simulated the flux of neutral interstellar D at IBEX for the actual measurement conditions. We assessed the number of interstellar D atom counts expected during the first three years of IBEX operation. We also simulated the observations expected during an epoch of high solar activity. In addition, we calculated the expected counts of D atoms from the thin terrestrial water layer covering the IBEX-Lo conversion surface, sputtered by neutral interstellar He atoms. Results: Most D counts registered by IBEX-Lo are expected to come from the water layer, exceeding the interstellar signal by 2 orders of magnitude. However, the sputtering should stop once the Earth leaves the portion of orbit traversed by interstellar He atoms. We identify seasons during the year when mostly the genuine interstellar D atoms are expected in the signal. During the first 3 years of IBEX operations about 2 detectable interstellar D atoms are expected. This number is comparable to the expected number of sputtered D atoms registered during the same time intervals. Conclusions: The most favorable conditions for the detection occur during low solar activity, in an interval including March and April each year. The detection chances could be improved by extending the instrument duty cycle, say, by making observations in the special deuterium mode of IBEX-Lo.
Resumo:
Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S. GPS (Global Positioning System) and the Russian GLONASS (Global’naya Nawigatsionnaya Sputnikowaya Sistema). The data was recorded in the years 2008–2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solutions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these parameters. A fair agreement for GPS and GLONASS was found in the geocenter x- and y-coordinate series. Our tests, however, clearly reveal artifacts in the z-component determined with the GLONASS data. Large periodic excursions in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system and thus have a period of about 4 months (third of a year). A detailed analysis revealed that the artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). A simple formula is derived, describing the relation between the geocenter z-coordinate and the corresponding parameter of the SRP. The effect can be explained by first-order perturbation theory of celestial mechanics. The theory also predicts a heavy impact on the GNSS-derived geocenter if once-per-revolution SRP parameters are estimated in the direction of the satellite’s solar panel axis. Specific experiments using GPS observations revealed that this is indeed the case. Although the main focus of this article is on GNSS, the theory developed is applicable to all satellite observing techniques. We applied the theory to satellite laser ranging (SLR) solutions using LAGEOS. It turns out that the correlation between geocenter and SRP parameters is not a critical issue for the SLR solutions. The reasons are threefold: The direct SRP is about a factor of 30–40 smaller for typical geodetic SLR satellites than for GNSS satellites, allowing it in most cases to not solve for SRP parameters (ruling out the correlation between these parameters and the geocenter coordinates); the orbital arc length of 7 days (which is typically used in SLR analysis) contains more than 50 revolutions of the LAGEOS satellites as compared to about two revolutions of GNSS satellites for the daily arcs used in GNSS analysis; the orbit geometry is not as critical for LAGEOS as for GNSS satellites, because the elevation angle of the Sun w.r.t. the orbital plane is usually significantly changing over 7 days.
Resumo:
The contribution of Starlette, Stella, and AJI-SAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the Z component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the Z geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended.This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking,is very important and needs to be implemented in the SLR data analysis.
Resumo:
Meindl et al. (Adv Space Res 51(7):1047–1064, 2013) showed that the geocenter z -component estimated from observations of global navigation satellite systems (GNSS) is strongly correlated to a particular parameter of the solar radiation pressure (SRP) model developed by Beutler et al. (Manuscr Geod 19:367–386, 1994). They analyzed the forces caused by SRP and the impact on the satellites’ orbits. The authors achieved their results using perturbation theory and celestial mechanics. Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026, 2013) also deal with the geocenter determination with GNSS. The authors carried out a collinearity diagnosis of the associated parameter estimation problem. They conclude “without much exaggerating that current GNSS are insensitive to any component of geocenter motion”. They explain this inability by the high degree of collinearity of the geocenter coordinates mainly with satellite clock corrections. Based on these results and additional experiments, they state that the conclusions drawn by Meindl et al. (Adv Space Res 51(7):1047–1064, 2013) are questionable. We do not agree with these conclusions and present our arguments in this article. In the first part, we review and highlight the main characteristics of the studies performed by Meindl et al. (Adv Space Res 51(7):1047–1064, 2013) to show that the experiments are quite different from those performed by Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026,2013) . In the second part, we show that normal equation (NEQ) systems are regular when estimating geocenter coordinates, implying that the covariance matrices associated with the NEQ systems may be used to assess the sensitivity to geocenter coordinates in a standard way. The sensitivity of GNSS to the components of the geocenter is discussed. Finally, we comment on the arguments raised by Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026, 2013) against the results of Meindl et al. (Adv Space Res 51(7):1047–1064, 2013).
Resumo:
The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) aims at the data collection and analysis of all available satellite navigation systems. In particular the new global and regional satellite navigation systems are of interest, i.e., the European Galileo, the Chinese BeiDou, the Japanese QZSS as well as satellite based augmentation systems. This article analyzes the orbit and clock quality of the Galileo products of four MGEX analysis centers for a common time period of 20 weeks. Orbit comparisons of the individual analysis centers have a consistency at the 5–30 cm level. Day boundary discontinuities range from 4 to 28 cm whereas 2-day orbit fit RMS values vary between 1 and 7 cm. The accuracy evaluated by satellite laser ranging residuals is on the one decimeter level with a systematic bias of about −5 cm for all analysis centers. In addition, systematic errors on the decimeter level related to solar radiation pressure mismodeling are present in all orbit products. Due to the correlation of radial orbit errors with the clock parameters, these errors are also visible as a bump in the Allan deviation of the Galileo satellite clocks at the orbital frequency.