189 resultados para Sleep-disordered breathing
Resumo:
Sleep-disordered breathing represents a risk factor for cardiovascular morbidity and mortality and negatively affects short-term and long-term outcome after an ischemic stroke or transient ischemic attack. The effect of continuous positive airways pressure in patients with sleep-disordered breathing and acute cerebrovascular event is poorly known. The SAS CARE 1 study assesses the effects of sleep-disordered breathing on clinical evolution, vascular functions, and markers within the first three-months after an acute cerebrovascular event. The SAS CARE 2 assesses the effect of continuous positive airways pressure on clinical evolution, cardiovascular events, and mortality as well as vascular functions and markers at 12 and 24 months after acute cerebrovascular event.
Resumo:
Sleep-disordered breathing (SDB) negatively impacts stroke outcome. Near-infrared spectroscopy showed the acute cerebral hemodynamic effects of SDB.
Resumo:
Sleep disordered breathing with central apnea or hypopnea frequently occurs at high altitude and is thought to be caused by a decrease in blood CO(2) level. The aim of this study was to assess the effects of added respiratory dead space on sleep disordered breathing.
Resumo:
Sleep-disordered breathing (SDB) represents a risk factor for cardiovascular morbidity after a cerebral ischemic event (acute ischemic event, ischemic stroke, or transient ischemic attack). In the present study, endothelial function and arterial stiffness were analyzed in patients who experienced a postacute ischemic event with relation to SDB, sleep disruption, and nocturnal oxygenation parameters.
Resumo:
BACKGROUND AND PURPOSE: Sleep-disordered breathing (SDB) is frequent in stroke patients. Risk factors, treatment response, short-term and long-term outcome of SDB in stroke patients are poorly known. METHODS: We prospectively studied 152 patients (mean age 56+/-13 years) with acute ischemic stroke. Cardiovascular risk factors, Epworth sleepiness score (ESS), stroke severity/etiology, and time of stroke onset were assessed. The apnea-hypopnea index (AHI) was determined 3+/-2 days after stroke onset and 6 months later (subacute phase). Continuous positive airway pressure (CPAP) treatment was started acutely in patients with SDB (AHI > or =15 or AHI > or =10+ESS >10). CPAP compliance, incidence of vascular events, and stroke outcome were assessed 60+/-16 months later (chronic phase). RESULTS: Initial AHI was 18+/-16 (> or =10 in 58%, > or =30 in 17% of patients) and decreased in the subacute phase (P<0.001). Age, diabetes, and nighttime stroke onset were independent predictors of AHI (r2=0.34). In patients with AHI > or =30, age, male gender, body mass index, diabetes, hypertension, coronary heart disease, ESS, and macroangiopathic etiology of stroke were significantly higher/more common than in patients with AHI <10. Long-term incidence of vascular events and stroke outcome were similar in both groups. CPAP was started in 51% and continued chronically in 15% of SDB pts. Long-term stroke mortality was associated with initial AHI, age, hypertension, diabetes, and coronary heart disease. CONCLUSIONS: SDB is common particularly in elderly stroke male patients with diabetes, nighttime stroke onset, and macroangiopathy as cause of stroke; it improves after the acute phase, is associated with an increased poststroke mortality, and can be treated with CPAP in a small percentage of patients.
Resumo:
Background. Fatigue in patients with multiple sclerosis (MS) is highly prevalent and severely impacts quality of life. Recent studies suggested that sleep-disordered breathing (SDB) significantly contributes to fatigue in MS. Study Objective. To evaluate the importance of routine respirography in MS patients with severe fatigue and to explore the effects of treatment with continuous positive airway pressure (CPAP). Patients and Methods. We prospectively assessed the presence of severe fatigue, as defined by a score of ≥5.0 on the Fatigue Severity Scale (FSS), in 258 consecutive MS patients. Ninety-seven patients (38%) suffered from severe fatigue, whereof 69 underwent overnight respirography. Results. We diagnosed SDB in 28 patients (41%). Male sex was the only independent associate of SDB severity (P = 0.003). CPAP therapy in 6 patients was associated with a significant reduction of FSS scores (5.8 ± 0.5 versus 4.8 ± 0.6, P = 0.04), but the scores remained pathological (≥4.0) in all patients. Conclusion. Respirography in MS patients with severe fatigue should be considered in daily medical practice, because SDB frequency is high and CPAP therapy reduces fatigue severity. However, future work is needed to understand the real impact of CPAP therapy on quality of life in this patient group.
Resumo:
Background: Disturbed sleep is a core feature of narcolepsy with cataplexy (NC). Few studies have independently assessed sleep-disordered breathing (SDB) and periodic limb movements (PLMs) in non-homogeneous series of patients with and without cataplexy. We systematically assessed both SDB and PLMs in well-defined NC patients. Methods: We analyzed the clinical and polysomnographic features of 35 consecutive NC patients (mean age 40 ± 16 years, 51% males, 23/23 hypocretin-deficient) to assess the prevalence of SDB (apnea-hypopnea index >5) and PLMs (periodic leg movements in sleep (PLMI) >15) together with their impact on nocturnal sleep and daytime sleepiness using the multiple sleep latency test. Results: 11 (31%) and 14 (40%) patients had SDB and PLMs, respectively. SDB was associated with older age (49 ± 16 vs. 35 ± 13 years, p = 0.02), higher BMI (30 ± 5 vs. 27 ± 6, p = 0.05), and a trend towards higher PLMI (25 ± 20 vs. 12 ± 23, p = 0.052), whereas PLMs with older age (50 ± 16 vs. 33 ± 11 years, p = 0.002) and reduced and fragmented sleep (e.g. sleep efficiency of 82 ± 12% vs. 91 ± 6%, p = 0.015; sleep time of 353 ± 66 vs. 395 ± 28, p = 0.010). SDB and PLMs were also mutually associated (p = 0.007), but not correlated to daytime sleepiness. Conclusions: SDB and PLMs are highly prevalent and associated in NC. Nevertheless, SDB and PLMs are rarely severe, suggesting an overall limited effect on clinical manifestations.
Resumo:
Background Chronic mountain sickness (CMS) is often associated with vascular dysfunction, but the underlying mechanism is unknown. Sleep disordered breathing (SDB) frequently occurs at high altitude. At low altitude SDB causes vascular dysfunction. Moreover, in SDB, transient elevations of right-sided cardiac pressure may cause right-to-left shunting in the presence of a patent foramen ovale (PFO) and, in turn, further aggravate hypoxemia and pulmonary hypertension. We speculated that compared to healthy high-altitude dwellers, in patients with CMS, SDB and nocturnal hypoxemia are more pronounced and related to vascular dysfunction. Methods We performed overnight sleep recordings, and measured systemic and pulmonary-artery pressure in 23 patients with CMS (mean±SD age 52.8±9.8 y) and 12 healthy controls (47.8±7.8 y) at 3600 m. In a subgroup of 15 subjects with SDB, we searched for PFO with transesophagal echocardiography. Results The major new findings were that in CMS patients, a) SDB and nocturnal hypoxemia was more severe (P<0.01) than in controls (apnea/hypopnea index, AHI, 38.9±25.5 vs. 14.3±7.8[nb/h]; SaO2, 80.2±3.6 vs. 86.8±1.7[%], CMS vs. controls), and b) AHI was directly correlated with systemic blood pressure (r=0.5216, P=0.001) and pulmonary-artery pressure (r=0.4497, P=0.024). PFO was associated with more severe SDB (AHI 48.8±24.7 vs. 14.8±7.3[nb/h], P=0.013, PFO vs. no PFO) and hypoxemia. Conclusion SDB and nocturnal hypoxemia are more severe in CMS patients than in controls and are associated with systemic and pulmonary vascular dysfunction. The presence of a PFO appeared to further aggravate SDB. Closure of PFO may improve SDB, hypoxemia and vascular dysfunction in CMS patients. Clinical Trials Gov Registration NCT01182792.
Resumo:
OBJECTIVES Sleep-disordered breathing (SDB) is very common in acute stroke patients and has been related to poor outcome. However, there is a lack of data about the association between SDB and stroke in developing countries. The study aims to characterize the frequency and severity of SDB in Brazilian patients during the acute phase of ischemic stroke; to identify clinical and laboratorial data related to SDB in those patients; and to assess the relationship between sleep apnea and functional outcome after six months of stroke. METHODS Clinical data and laboratorial tests were collected at hospital admission. The polysomnography was performed on the first night after stroke symptoms onset. Functional outcome was assessed by the modified Rankin Scale (mRS). RESULTS We prospectively evaluated 69 patients with their first-ever acute ischemic stroke. The mean apnea-hypopnea index (AHI) was 37.7 ± 30.2. Fifty-three patients (76.8%) exhibited an AHI ≥ 10 with predominantly obstructive respiratory events (90.6%), and thirty-three (47.8%) had severe sleep apnea. Age (OR: 1.09; 95% CI: 1.03-1.15; p= 0.004) and hematocrit (OR: 1.18; 95% CI: 1.03-1.34; p= 0.01) were independent predictors of sleep apnea. Age (OR: 1.13; 95% CI: 1.03-1.24; p= 0.01), body mass index (OR: 1.54; 95% CI: 1.54-2.18; p= 0.01), and hematocrit (OR: 1.19; 95% CI: 1.01-1.40; p= 0.04) were independent predictors of severe sleep apnea. The National Institutes of Health Stroke Scale (NIHSS; OR: 1.30; 95% CI: 1.1-1.5; p= 0.001) and severe sleep apnea (OR: 9.7; 95% CI: 1.3-73.8; p= 0.03) were independently associated to mRS >2 at six months, after adjusting for confounders. CONCLUSION Patients with acute ischemic stroke in Brazil have a high frequency of SDB. Severe sleep apnea is associated with a poor long-term functional outcome following stroke in that population.
Resumo:
UNLABELLED Obstructive sleep apnea (OSA) is a frequent syndrome characterized by intermittent hypoxemia and increased prevalence of arterial hypertension and cardiovascular morbidity. In OSA, the presence of patent foramen ovale (PFO) is associated with increased number of apneas and more severe oxygen desaturation. We hypothesized that PFO closure improves sleep-disordered breathing and, in turn, has favorable effects on vascular function and arterial blood pressure. In 40 consecutive patients with newly diagnosed OSA, we searched for PFO. After initial cardiovascular assessment, the 14 patients with PFO underwent initial device closure and the 26 without PFO served as control group. Conventional treatment for OSA was postponed for 3 months in both groups, and polysomnographic and cardiovascular examinations were repeated at the end of the follow-up period. PFO closure significantly improved the apnea-hypopnea index (ΔAHI -7.9±10.4 versus +4.7±13.1 events/h, P=0.0009, PFO closure versus control), the oxygen desaturation index (ΔODI -7.6±16.6 versus +7.6±17.0 events/h, P=0.01), and the number of patients with severe OSA decreased significantly after PFO closure (79% versus 21%, P=0.007). The following cardiovascular parameters improved significantly in the PFO closure group, although remained unchanged in controls: brachial artery flow-mediated vasodilation, carotid artery stiffness, nocturnal systolic and diastolic blood pressure (-7 mm Hg, P=0.009 and -3 mm Hg, P=0.04, respectively), blood pressure dipping, and left ventricular diastolic function. In conclusion, PFO closure in OSA patients improves sleep-disordered breathing and nocturnal oxygenation. This translates into an improvement of endothelial function and vascular stiffening, a decrease of nighttime blood pressure, restoration of the dipping pattern, and improvement of left ventricular diastolic function. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01780207.