60 resultados para Signal-to-noise ratio
Resumo:
To compare ECG-gated and non-gated CT angiography of the aorta at the same radiation dose, with regard to motion artifacts (MA), diagnostic confidence (DC) and signal-to-noise-ratios (SNRs).
Resumo:
OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.
Resumo:
Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.
Resumo:
We performed a Rey visual design learning test (RVDLT) in 17 subjects and measured intervoxel coherence (IC) by DTI as an indication of connectivity to investigate if visual memory performance would depend on white matter structure in healthy persons. IC considers the orientation of the adjacent voxels and has a better signal-to-noise ratio than the commonly used fractional anisotropy index. Voxel-based t-test analysis of the IC values was used to identify neighboring voxel clusters with significant differences between 7 low and 10 high test performers. We detected 9 circumscribed significant clusters (p< .01) with lower IC values in low performers than in high performers, with centers of gravity located in left and right superior temporal region, corpus callosum, left superior longitudinal fascicle, and left optic radiation. Using non-parametric correlation analysis, IC and memory performance were significantly correlated in each of the 9 clusters (r< .61 to r< .81; df=15, p< .01 to p< .0001). The findings provide in vivo evidence for the contribution of white matter structure to visual memory in healthy people.
Resumo:
Users of cochlear implants (auditory aids, which stimulate the auditory nerve electrically at the inner ear) often suffer from poor speech understanding in noise. We evaluate a small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. The system is evaluated in simulated and real, anechoic and reverberant environments. Results from simulations show improvements of 3.4 to 9.3 dB in signal to noise ratio for rooms with realistic reverberation and more than 18 dB under anechoic conditions. Speech understanding in noise is measured in 6 adult cochlear implant users in a reverberant room, showing average improvements of 7.9–9.6 dB, when compared to a single omnidirectional microphone or 1.3–5.6 dB, when compared to a simple directional two-microphone device. Subjective evaluation in a cafeteria at lunchtime shows a preference of the cochlear implant users for the evaluated device in terms of speech understanding and sound quality.
Resumo:
PURPOSE: To prospectively quantify in vitro the influence of gadopentetate dimeglumine and ioversol on the magnetic resonance (MR) imaging signal observed with a variety of musculoskeletal pulse sequences to predict optimum gadolinium concentrations for direct MR arthrography at 1.5 and 3.0 T. MATERIALS AND METHODS: In an in vitro study, T1 and T2 relaxation times of three dilution series of gadopentetate dimeglumine (concentration, 0-20.0 mmol gadolinium per liter) at ioversol concentrations with iodine concentration of 0, 236.4, and 1182 mmol iodine per liter (corresponding to 0, 30, and 150 mg of iodine per milliliter) were measured at 1.5 and 3.0 T. The relaxation rate dependence on concentrations of gadolinium and iodine was analytically modeled, and continuous profiles of signal versus gadolinium concentration were calculated for 10 pulse sequences used in current musculoskeletal imaging. After fitting to experimental discrete profiles, maximum signal-to-noise ratio (SNR), gadolinium concentration with maximum SNR, and range of gadolinium concentration with 90% of maximum SNR were derived. The overall influence of field strength and iodine concentration on these parameters was assessed by using t tests. The deviation of simulated from experimental signal-response profiles was assessed with the autocorrelation of the residuals. RESULTS: The model reproduced relaxation rates of 0.37-38.24 sec(-1), with a mean error of 4.5%. Calculated SNR profiles matched the discrete experimental profiles, with autocorrelation of the residuals divided by the mean of less than 5.0. Admixture of ioversol consistently reduced T1 and T2, narrowed optimum gadolinium concentration ranges (P = .004-.006), and reduced maximum SNR (P < .001 to not significant). Optimum gadolinium concentration was 0.7-3.4 mmol/L at both field strengths. At 3.0 T, maximum SNR was up to 75% higher than at 1.5 T. CONCLUSION: Admixture of ioversol to gadopentetate dimeglumine solutions results in a consistent additional relaxation enhancement, which can be analytically modeled to allow a near-quantitative a priori optimized match of contrast media concentrations and imaging protocol for a broad variety of pulse sequences.
Resumo:
We study the spatial and temporal distribution of hydrogen energetic neutral atoms (ENAs) from the heliosheath observed with the IBEX-Lo sensor of the Interstellar Boundary EXplorer (IBEX) from solar wind energies down to the lowest available energy (15 eV). All available IBEX-Lo data from 2009 January until 2013 June were included. The sky regions imaged when the spacecraft was outside of Earth's magnetosphere and when the Earth was moving toward the direction of observation offer a sufficient signal-to-noise ratio even at very low energies. We find that the ENA ribbon—a 20° wide region of high ENA intensities—is most prominent at solar wind energies whereas it fades at lower energies. The maximum emission in the ribbon is located near the poles for 2 keV and closer to the ecliptic plane for energies below 1 keV. This shift is an evidence that the ENA ribbon originates from the solar wind. Below 0.1 keV, the ribbon can no longer be identified against the globally distributed ENA signal. The ENA measurements in the downwind direction are affected by magnetospheric contamination below 0.5 keV, but a region of very low ENA intensities can be identified from 0.1 keV to 2 keV. The energy spectra of heliospheric ENAs follow a uniform power law down to 0.1 keV. Below this energy, they seem to become flatter, which is consistent with predictions. Due to the subtraction of local background, the ENA intensities measured with IBEX agree with the upper limit derived from Lyα observations.
Resumo:
INTRODUCTION The Rondo is a single-unit cochlear implant (CI) audio processor comprising the identical components as its behind-the-ear predecessor, the Opus 2. An interchange of the Opus 2 with the Rondo leads to a shift of the microphone position toward the back of the head. This study aimed to investigate the influence of the Rondo wearing position on speech intelligibility in noise. METHODS Speech intelligibility in noise was measured in 4 spatial configurations with 12 experienced CI users using the German adaptive Oldenburg sentence test. A physical model and a numerical model were used to enable a comparison of the observations. RESULTS No statistically significant differences of the speech intelligibility were found in the situations in which the signal came from the front and the noise came from the frontal, ipsilateral, or contralateral side. The signal-to-noise ratio (SNR) was significantly better with the Opus 2 in the case with the noise presented from the back (4.4 dB, p < 0.001). The differences in the SNR were significantly worse with the Rondo processors placed further behind the ear than closer to the ear. CONCLUSION The study indicates that CI users with the receiver/stimulator implanted in positions further behind the ear are expected to have higher difficulties in noisy situations when wearing the single-unit audio processor.
Resumo:
The level of improvement in the audiological results of Baha(®) users mainly depends on the patient's preoperative hearing thresholds and the type of Baha sound processor used. This investigation shows correlations between the preoperative hearing threshold and postoperative aided thresholds and audiological results in speech understanding in quiet of 84 Baha users with unilateral conductive hearing loss, bilateral conductive hearing loss and bilateral mixed hearing loss. Secondly, speech understanding in noise of 26 Baha users with different Baha sound processors (Compact, Divino, and BP100) is investigated. Linear regression between aided sound field thresholds and bone conduction (BC) thresholds of the better ear shows highest correlation coefficients and the steepest slope. Differences between better BC thresholds and aided sound field thresholds are smallest for mid-frequencies (1 and 2 kHz) and become larger at 0.5 and 4 kHz. For Baha users, the gain in speech recognition in quiet can be expected to lie in the order of magnitude of the gain in their hearing threshold. Compared to its predecessor sound processors Baha(®) Compact and Baha(®) Divino, Baha(®) BP100 improves speech understanding in noise significantly by +0.9 to +4.6 dB signal-to-noise ratio, depending on the setting and the use of directional microphone. For Baha users with unilateral and bilateral conductive hearing loss and bilateral mixed hearing loss, audiological results in aided sound field thresholds can be estimated with the better BC hearing threshold. The benefit in speech understanding in quiet can be expected to be similar to the gain in their sound field hearing threshold. The most recent technology of Baha sound processor improves speech understanding in noise by an order of magnitude that is well perceived by users and which can be very useful in everyday life.
Resumo:
Although magnetic resonance spectroscopy can be used as a unique tool to study molecular diffusion, it is rarely used to measure the diffusion properties of intramyocellular and extramyocellular lipids. Lipids have very low apparent diffusion coefficients (ADCs), which make these measurements difficult and necessitate strong diffusion gradients and long diffusion times. Consequence is that these measurements have inherently low signal-to-noise ratio and are prone to artifacts. The addition of physiological triggering and individual storage and processing of the spectra is seen to be a possible approach to maximize signal intensity and achieve high reproducibility of the experiments. Thus, the optimized measurement protocol was used to investigate the diffusion properties of lipids in human skeletal muscle in vivo. At a diffusion time of about 110 ms, intramyocellular lipids show a significantly lower ADC (2.0 × 10(-6) mm(2)/s, 95% confidence interval 1.10 × 10(-6) to 2.94 × 10(-6) mm(2)/s) than extramyocellular lipids (1.58 × 10(-5) mm(2)/s, 95% confidence interval 1.41 × 10(-5) to 1.75 × 10(-5) mm(2)/s). Because the chemical properties of both lipid pools can be assumed to be similar, the difference can only be attributed to restricted or severely hindered diffusion in the intramyocellular droplets.
Resumo:
A 20-channel phased-array coil for MRI of mice has been designed, constructed, and validated with bench measurements and high-resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3- and 1.3-fold, respectively. Comparison with a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of twofold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images.
Resumo:
Magnetic resonance spectroscopy enables insight into the chemical composition of spinal cord tissue. However, spinal cord magnetic resonance spectroscopy has rarely been applied in clinical work due to technical challenges, including strong susceptibility changes in the region and the small cord diameter, which distort the lineshape and limit the attainable signal to noise ratio. Hence, extensive signal averaging is required, which increases the likelihood of static magnetic field changes caused by subject motion (respiration, swallowing), cord motion, and scanner-induced frequency drift. To avoid incoherent signal averaging, it would be ideal to perform frequency alignment of individual free induction decays before averaging. Unfortunately, this is not possible due to the low signal to noise ratio of the metabolite peaks. In this article, frequency alignment of individual free induction decays is demonstrated to improve spectral quality by using the high signal to noise ratio water peak from non-water-suppressed proton magnetic resonance spectroscopy via the metabolite cycling technique. Electrocardiography (ECG)-triggered point resolved spectroscopy (PRESS) localization was used for data acquisition with metabolite cycling or water suppression for comparison. A significant improvement in the signal to noise ratio and decrease of the Cramér Rao lower bounds of all metabolites is attained by using metabolite cycling together with frequency alignment, as compared to water-suppressed spectra, in 13 healthy volunteers.
Resumo:
Low-field (LF) (0.2-0.4T) magnetic resonance (MR) imaging predominates in veterinary practice. Advantages of LF MR include reduced costs, better patient access, and greater safety. High quality examinations can be achieved using appropriate protocols and investing more scanning time than with high-field (HF) systems. The main disadvantage of LF MR is the reduced signal to noise ratio compared with HF systems. LF MR protocols for small animal brain and spine imaging are described.
Resumo:
Two commercially available electrode catheters are examined for their suitability in esophageal long-term ECG recordings. Both, electrical sensing characteristics as well as clinical acceptance were investigated in a clinical study including inpatients with cardiovascular diseases. In total, 31 esophageal ECG were obtained in 36 patients. Results showed that esophageal electrodes were well tolerated by the patients. Hemispherical electrodes with higher diameter required more insertion attempts and were associated with increased failure rates as compared to cylindrical electrodes. In contrast, the higher surface area of hemispherical electrodes resulted in significantly higher signal-to-noise ratio. Contact impedance was equal for both electrode types, but esophageal electrodes had lower impedance if compared with skin electrodes.