34 resultados para Shared print
Resumo:
E-book reading devices open new possibilities in the field of reading. More activities than just reading a book can be performed with a single electronic device. For a long time, electronic reading devices have not been favored because their active LCD displays used to have a relatively low contrast. The new generation of electronic reading devices differs from earlier ones in the nature of the display: active LCD displays have been replaced with displays based on e-ink technology, which has display properties closer to that of printed paper. Moreover, e-ink technology has higher power efficiency, thereby increasing battery life and reducing weight. At first sight, the display looks similar to paper print, but the question remains whether the reading behavior also is equal to that of reading a printed book. In the present study, we analyzed and compared reading behavior on e-reader displays and on printed paper. The results suggest that the reading behavior on e-readers is indeed very similar to the reading behavior on print. Participants shared similar proportions of regressive saccades while reading on e-readers and print. Significant differences in fixation duration suggest that e-readers, in some situations, may even provide better legibility.
Resumo:
Shared Decision Making (SDM) is widely accepted as the preferred method for reaching treatment decisions in the oncology setting including those about clinical trial participation: however, there is some disagreement between researchers over the components of SDM. Specific standardized coding systems are needed to help overcome this difficulty.
Resumo:
We recently mapped the belt mutation in Brown Swiss cattle to a 922 kb interval on BTA3. In this study, we analysed two additional cattle breeds with the belted phenotype: Galloway and Dutch Belted (Lakenvelder). By genotyping microsatellites in solid-coloured and belted Galloways, we confirmed that the belt mutation in Galloways is strongly associated with the same chromosomal locus as in Brown Swiss cattle. Subsequently, we analysed 36 SNPs in the belt interval in three breeds. We identified a single belt-associated haplotype for each of the analysed breeds. The three breed-specific belt haplotypes share alleles in four blocks. Three of these blocks comprise only one single or two consecutive markers, while the largest shared haplotype block encompasses nine consecutive SNPs in a 336 kb interval. The large shared haplotype across divergent breeds suggests a common mutation for the belt phenotype in all three breeds. We identified a potential candidate gene within this interval coding for the developmental transcription factor HES6. We re-sequenced the complete HES6 coding sequence in belted and solid-coloured cattle but did not find belt-associated polymorphisms. In conclusion, our data provide strong evidence in favour of a common founder for the belt phenotype in different cattle breeds and have resulted in an improved fine-mapping of the causative mutation.
Resumo:
The vascular-stromal compartment of lymph nodes is important for lymph node function, and high endothelial venules (HEVs) play a critical role in controlling the entry of recirculating lymphocytes. In autoimmune and autoinflammatory diseases, lymph node swelling is often accompanied by apparent HEV expansion and, potentially, targeting HEV expansion could be used therapeutically to limit autoimmunity. In previous studies using mostly flow cytometry analysis, we defined three differentially regulated phases of lymph node vascular-stromal growth: initiation, expansion, and the re-establishment of vascular quiescence and stabilization. In this study, we use optical projection tomography to better understand the morphologic aspects of HEV growth upon immunization with ovalbumin/CFA (OVA/CFA). We find HEV elongation as well as modest arborization during the initiation phase, increased arborization during the expansion phase, and, finally, vessel narrowing during the re-establishment of vascular quiescence and stabilization. We also examine acutely enlarged autoinflammatory lymph nodes induced by regulatory T cell depletion and show that HEVs are expanded and morphologically similar to the expanded HEVs in OVA/CFA-stimulated lymph nodes. These results reinforce the idea of differentially regulated, distinct phases of vascular-stromal growth after immunization and suggest that insights gained from studying immunization-induced lymph node vascular growth may help to understand how the lymph node vascular-stromal compartment could be therapeutically targeted in autoimmune and autoinflammatory diseases.
Resumo:
Edges are crucial for the formation of coherent objects from sequential sensory inputs within a single modality. Moreover, temporally coincident boundaries of perceptual objects across different sensory modalities facilitate crossmodal integration. Here, we used functional magnetic resonance imaging in order to examine the neural basis of temporal edge detection across modalities. Onsets of sensory inputs are not only related to the detection of an edge but also to the processing of novel sensory inputs. Thus, we used transitions from input to rest (offsets) as convenient stimuli for studying the neural underpinnings of visual and acoustic edge detection per se. We found, besides modality-specific patterns, shared visual and auditory offset-related activity in the superior temporal sulcus and insula of the right hemisphere. Our data suggest that right hemispheric regions known to be involved in multisensory processing are crucial for detection of edges in the temporal domain across both visual and auditory modalities. This operation is likely to facilitate cross-modal object feature binding based on temporal coincidence. Hum Brain Mapp, 2008. (c) 2008 Wiley-Liss, Inc.
Resumo:
Clinical efficacy of aerosol therapy in premature newborns depends on the efficiency of delivery of aerosolized drug to the bronchial tree. To study the influence of various anatomical, physical, and physiological factors on aerosol delivery in preterm newborns, it is crucial to have appropriate in vitro models, which are currently not available. We therefore constructed the premature infant nose throat-model (PrINT-Model), an upper airway model corresponding to a premature infant of 32-wk gestational age by three-dimensional (3D) reconstruction of a three-planar magnetic resonance imaging scan and subsequent 3D-printing. Validation was realized by visual comparison and comparison of total airway volume. To study the feasibility of measuring aerosol deposition, budesonide was aerosolized through the cast and lung dose was expressed as percentage of nominal dose. The airway volumes of the initial magnetic resonance imaging and validation computed tomography scan showed a relative deviation of 0.94%. Lung dose at low flow (1 L/min) was 61.84% and 9.00% at high flow (10 L/min), p < 0.0001. 3D-reconstruction provided an anatomically accurate surrogate of the upper airways of a 32-wk-old premature infant, making the model suitable for future in vitro testing.