176 resultados para Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waterproofing agents are widely used to protect leather and textiles in both domestic and occupational activities. An outbreak of acute respiratory syndrome following exposure to waterproofing sprays occurred during the winter 2002-2003 in Switzerland. About 180 cases were reported by the Swiss Toxicological Information Centre between October 2002 and March 2003, whereas fewer than 10 cases per year had been recorded previously. The reported cases involved three brands of sprays containing a common waterproofing mixture, that had undergone a formulation change in the months preceding the outbreak. A retrospective analysis was undertaken in collaboration with the Swiss Toxicological Information Centre and the Swiss Registries for Interstitial and Orphan Lung Diseases to clarify the circumstances and possible causes of the observed health effects. Individual exposure data were generated with questionnaires and experimental emission measurements. The collected data was used to conduct numeric simulation for 102 cases of exposure. A classical two-zone model was used to assess the aerosol dispersion in the near- and far-field during spraying. The resulting assessed dose and exposure levels obtained were spread on large scales, of several orders of magnitude. No dose-response relationship was found between exposure indicators and health effects indicators (perceived severity and clinical indicators). Weak relationships were found between unspecific inflammatory response indicators (leukocytes, C-reactive protein) and the maximal exposure concentration. The results obtained disclose a high interindividual response variability and suggest that some indirect mechanism(s) predominates in the respiratory disease occurrence. Furthermore, no threshold could be found to define a safe level of exposure. These findings suggest that the improvement of environmental exposure conditions during spraying alone does not constitute a sufficient measure to prevent future outbreaks of waterproofing spray toxicity. More efficient preventive measures are needed prior to the marketing and distribution of new waterproofing agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positive-stranded viruses synthesize their RNA in membrane-bound organelles, but it is not clear how this benefits the virus or the host. For coronaviruses, these organelles take the form of double-membrane vesicles (DMVs) interconnected by a convoluted membrane network. We used electron microscopy to identify murine coronaviruses with mutations in nsp3 and nsp14 that replicated normally while producing only half the normal amount of DMVs under low-temperature growth conditions. Viruses with mutations in nsp5 and nsp16 produced small DMVs but also replicated normally. Quantitative reverse transcriptase PCR (RT-PCR) confirmed that the most strongly affected of these, the nsp3 mutant, produced more viral RNA than wild-type virus. Competitive growth assays were carried out in both continuous and primary cells to better understand the contribution of DMVs to viral fitness. Surprisingly, several viruses that produced fewer or smaller DMVs showed a higher fitness than wild-type virus at the reduced temperature, suggesting that larger and more numerous DMVs do not necessarily confer a competitive advantage in primary or continuous cell culture. For the first time, this directly demonstrates that replication and organelle formation may be, at least in part, studied separately during infection with positive-stranded RNA virus. IMPORTANCE The viruses that cause severe acute respiratory syndrome (SARS), poliomyelitis, and hepatitis C all replicate in double-membrane vesicles (DMVs). The big question about DMVs is why they exist in the first place. In this study, we looked at thousands of infected cells and identified two coronavirus mutants that made half as many organelles as normal and two others that made typical numbers but smaller organelles. Despite differences in DMV size and number, all four mutants replicated as efficiently as wild-type virus. To better understand the relative importance of replicative organelles, we carried out competitive fitness experiments. None of these viruses was found to be significantly less fit than wild-type, and two were actually fitter in tests in two kinds of cells. This suggests that viruses have evolved to have tremendous plasticity in the ability to form membrane-associated replication complexes and that large and numerous DMVs are not exclusively associated with efficient coronavirus replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonfluorescent low-cost, low-density oligonucleotide array was designed for detecting the whole coronavirus genus after reverse transcription (RT)-PCR. The limit of detection was 15.7 copies/reaction. The clinical detection limit in patients with severe acute respiratory syndrome was 100 copies/sample. In 39 children suffering from coronavirus 229E, NL63, OC43, or HKU1, the sensitivity was equal to that of individual real-time RT-PCRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Since the discovery of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, diagnostic protocols were quickly published and deployed globally. OBJECTIVES: We set out to assess the quality of MERS-CoV molecular diagnostics worldwide. STUDY DESIGN: Both sensitivity and specificity were assessed using 12 samples containing different viral loads of MERS-CoV or common coronaviruses (OC43, 229E, NL63, HKU1). RESULTS: The panel was sent to more than 106 participants, of which 99 laboratories from 6 continents returned 189 panel results.Scores ranged from 100% (84 laboratories) to 33% (1 laboratory). 15% of respondents reported quantitative results, 61% semi-quantitative (Ct-values or time to positivity) and 24% reported qualitative results. The major specific technique used was real-time RT-PCR using the WHO recommended targets upE, ORF1a and ORF1b. The evaluation confirmed that RT-PCRs targeting the ORF1b are less sensitive, and therefore not advised for primary diagnostics. CONCLUSIONS: The first external quality assessment MERS-CoV panel gives a good insight in molecular diagnostic techniques and their performances for sensitive and specific detection of MERS-CoV RNA globally. Overall, all laboratories were capable of detecting MERS-CoV with some differences in sensitivity. The observation that 8% of laboratories reported false MERS-CoV positive single assay results shows room for improvement, and the importance of using confirmatory targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The time course of impairment of respiratory mechanics and gas exchange in the acute respiratory distress syndrome (ARDS) remains poorly defined. We assessed the changes in respiratory mechanics and gas exchange during ARDS. We hypothesized that due to the changes in respiratory mechanics over time, ventilatory strategies based on rigid volume or pressure limits might fail to prevent overdistension throughout the disease process. METHODS: Seventeen severe ARDS patients {PaO2/FiO2 10.1 (9.2-14.3) kPa; 76 (69-107) mmHg [median (25th-75th percentiles)] and bilateral infiltrates} were studied during the acute, intermediate, and late stages of ARDS (at 1-3, 4-6 and 7 days after diagnosis). Severity of lung injury, gas exchange, and hemodynamics were assessed. Pressure-volume (PV) curves of the respiratory system were obtained, and upper and lower inflection points (UIP, LIP) and recruitment were estimated. RESULTS: (1) UIP decreased from early to established (intermediate and late) ARDS [30 (28-30) cmH2O, 27 (25-30) cmH2O and 25 (23-28) cmH2O (P=0.014)]; (2) oxygenation improved in survivors and in patients with non-pulmonary etiology in late ARDS, whereas all patients developed hypercapnia from early to established ARDS; and (3) dead-space ventilation and pulmonary shunt were larger in patients with pulmonary etiology during late ARDS. CONCLUSION: We found a decrease in UIP from acute to established ARDS. If applied to our data, the inspiratory pressure limit advocated by the ARDSnet (30 cmH2O) would produce ventilation over the UIP, with a consequent increased risk of overdistension in 12%, 43% and 65% of our patients during the acute, intermediate and late phases of ARDS, respectively. Lung protective strategies based on fixed tidal volume or pressure limits may thus not fully avoid the risk of lung overdistension throughout ARDS.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymyositis and interstitial lung diseases, predominantly nonspecific interstitial pneumonia (NSIP), are known to be frequent in antisynthetase syndrome, where anti-aminoacyl-tRNA synthetase antibodies are often identified. An unusual case of acute respiratory distress syndrome, secondary to such proven NSIP of cellular type with predominant CD8 lymphocytes, is described herein. The patient described in the present case study initially had a poor recovery with high dose of steroids, but this was followed by a good improvement after the prescription of tacrolimus and a low dose of prednisone. A precise diagnosis in similar circumstances may be life-saving, allowing the successful application of new immunosuppressants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Cyclic recruitment and derecruitment of atelectasis can occur during mechanical ventilation, especially in injured lungs. Experimentally, cyclic recruitment and derecruitment can be quantified by respiration-dependent changes in PaO2 (ΔPaO2), reflecting the varying intrapulmonary shunt fraction within the respiratory cycle. This study investigated the effect of inspiration to expiration ratio upon ΔPaO2 and Horowitz index. DESIGN Prospective randomized study. SETTING Laboratory investigation. SUBJECTS Piglets, average weight 30 ± 2 kg. INTERVENTIONS At respiratory rate 6 breaths/min, end-inspiratory pressure (Pendinsp) 40 cm H2O, positive end-expiratory pressure 5 cm H2O, and FIO2 1.0, measurements were performed at randomly set inspiration to expiration ratios during baseline healthy and mild surfactant depletion injury. Lung damage was titrated by repetitive surfactant washout to induce maximal cyclic recruitment and derecruitment as measured by multifrequency phase fluorimetry. Regional ventilation distribution was evaluated by electrical impedance tomography. Step changes in airway pressure from 5 to 40 cm H2O and vice versa were performed after lavage to calculate PO2-based recruitment and derecruitment time constants (TAU). MEASUREMENTS AND MAIN RESULTS In baseline healthy, cyclic recruitment and derecruitment could not be provoked, whereas in model acute respiratory distress syndrome, the highest ΔPaO2 were routinely detected at an inspiration to expiration ratio of 1:4 (range, 52-277 torr [6.9-36.9 kPa]). Shorter expiration time reduced cyclic recruitment and derecruitment significantly (158 ± 85 torr [21.1 ± 11.3 kPa] [inspiration to expiration ratio, 1:4]; 25 ± 12 torr [3.3 ± 1.6 kPa] [inspiration to expiration ratio, 4:1]; p < 0.0001), whereas the PaO2/FIO2 ratio increased (267 ± 50 [inspiration to expiration ratio, 1:4]; 424 ± 53 [inspiration to expiration ratio, 4:1]; p < 0.0001). Correspondingly, regional ventilation redistributed toward dependent lung regions (p < 0.0001). Recruitment was much faster (TAU: fast 1.6 s [78%]; slow 9.2 s) than derecruitment (TAU: fast 3.1 s [87%]; slow 17.7 s) (p = 0.0078). CONCLUSIONS Inverse ratio ventilation minimizes cyclic recruitment and derecruitment of atelectasis in an experimental model of surfactant-depleted pigs. Time constants for recruitment and derecruitment, and regional ventilation distribution, reflect these findings and highlight the time dependency of cyclic recruitment and derecruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Acute respiratory infections (ARI) are a major cause of morbidity in infancy worldwide, with cough and wheeze being alarming symptoms to parents. We aimed to analyze in detail the viral aetiology of ARI with such symptoms in otherwise healthy infants, including rhinoviruses and recently discovered viruses such as human metapneumovirus (HMPV), coronavirus NL63 and HKU1, and human bocavirus (HBoV). METHODS: We prospectively followed 197 unselected infants during their first year of life and assessed clinical symptoms by weekly standardized interviews. At the first ARI with cough or wheeze, we analyzed nasal swabs by sensitive individual real time polymerase chain reaction assays targeting 16 different respiratory viruses. RESULTS: All 112 infants who had an ARI had cough, and 39 (35%) had wheeze. One or more respiratory viruses were found in 88 of 112 (79%) cases. Fifteen (17%) dual and 3 (3%) triple infections were recorded. Rhino- (23% of all viruses) and coronaviruses (18%) were most common, followed by parainfluenza viruses (17%), respiratory syncytial virus (RSV) (16%), HMPV (13%), and HBoV (5%). Together rhinoviruses, coronaviruses, HMPV, and HBoV accounted for 60% (65 of 109) of viruses. Although symptom scores and need for general practitioner (GP) consultations were highest in infants infected with RSV, they were similar in infants infected with other viruses. Viral shedding at 3 weeks occurred in 20% of cases. CONCLUSIONS: Rhinoviruses, coronaviruses, HMPV, and HBoV are common pathogens associated with respiratory symptoms in otherwise healthy infants. They should be considered in the differential diagnosis of the aetiology of ARI in this age group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe acute respiratory failure of varying etiology may require the temporary use of artificial gas exchange devices. So far, extracorporeal membrane oxygenation and extracorporeal carbon dioxide removal have been used successfully for this purpose. A totally implantable intravascular oxygenator (IVOX) recently became available. The authors have used IVOX in three patients who presented with severe respiratory failure secondary to pneumonia (n = 2) and post-traumatic adult respiratory distress syndrome (n = 1). At the time of implantation, all patients had hypoxemia (PaO2 less than 60) despite a 100% inspired oxygen concentration and forced mechanical ventilation. The duration of IVOX therapy ranged from 12 to 71 hr. All patients initially showed improvement in arterial oxygenation, allowing for moderate reduction of ventilator therapy after several hours. In one patient the pulmonary status deteriorated further, and she died from multiple organ failure despite IVOX therapy. One patient could be stabilized but died from other causes. The third patient is a long-term survivor 18 months after IVOX therapy. Gas transfer capabilities of IVOX are limited when compared to extracorporeal membrane oxygenation, and this may restrict its clinical applicability in cases of severe adult respiratory distress syndrome. However, IVOX may be used successfully in selected patients with less severe respiratory failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Depressed mood following an acute coronary syndrome (ACS) is a risk factor for future cardiac morbidity. Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is associated with depression, and may be a process through which depressive symptoms influence later cardiac health. Additionally, a history of depression predicts depressive symptoms in the weeks following ACS. The purpose of this study was to determine whether a history of depression and/or current depression are associated with the HPA axis dysregulation following ACS. METHOD: A total of 152 cardiac patients completed a structured diagnostic interview, a standardized depression questionnaire and a cortisol profile over the day, 3 weeks after an ACS. Cortisol was analysed using: the cortisol awakening response (CAR), total cortisol output estimated using the area under the curve method, and the slope of cortisol decline over the day. RESULTS: Total cortisol output was positively associated with history of depression, after adjustment for age, gender, marital status, ethnicity, smoking status, body mass index (BMI), Global Registry of Acute Cardiac Events (GRACE) risk score, days in hospital, medication with statins and antiplatelet compounds, and current depression score. Men with clinically diagnosed depression after ACS showed a blunted CAR, but the CAR was not related to a history of depression. CONCLUSIONS: Patients with a history of depression showed increased total cortisol output, but this is unlikely to be responsible for associations between depression after ACS and later cardiac morbidity. However, the blunted CAR in patients with severe depression following ACS indicates that HPA dysregulation is present.