44 resultados para Schwarzenberg, Karl Philipp, Fürst zu, 1771-1820.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this prospective study was to characterize the morphology and physeal changes of the femoral head during maturation using MRI in a population-based group of asymptomatic volunteers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The purpose of the present study was to investigate the radial distribution patterns of cartilage degeneration in dysplastic hips at different stages of secondary osteoarthritis (OA) by using radial delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), and to assess whether pre-contrast measurements are necessary. Methods Thirty-five hips in 21 subjects (mean age ± SD, 27.6 ± 10.8 years) with acetabular dysplasia (lateral CE angle < 25°) were studied. Severity of OA was assessed on radiographs using Tönnis grading. Pre- (T1pre) and post-contrast T1 (T1Gd) values were measured at 7 sub-regions on radial reformatted slices acquired from a 3-dimensional (3D) T1 mapping sequence using a 1.5 T MR scanner. Values of radial T1pre, T1Gd and ΔR1 (1/T1Gd - 1/T1pre) of subgroups with different severity of OA were compared to those of the subgroup without OA using nonparametric tests, and bivariate linear Pearson correlations between radial T1Gd and ΔR1 were analyzed for each subgroup. Results Compared to the subgroup without OA, the subgroup with mild OA was observed with a significant decrease in T1Gd in the anterosuperior to superior sub-regions (mean, 476 ~ 507 ms, p = 0.026 ~ 0.042) and a significant increase in ΔR1 in the anterosuperior to superoposterior and posterior sub-regions (mean, 0.93 ~ 1.37 s-1, p = 0.012 ~ 0.042). The subgroup with moderate to severe OA was observed with a significant overall decrease in T1Gd (mean, 404 ~ 452 ms, p = 0.001 ~ 0.020) and an increase in ΔR1 (mean, 1.17 ~1.69 s-1, p = 0.001 ~ 0.020). High correlations were observed between radial T1Gd and ΔR1 for all subgroups (r = −0.869 ~ −0.944, p < 0.001). Conclusions Radial dGEMRIC without pre-contrast measurements is useful for evaluating different patterns of cartilage degeneration in the entire hip joint of patients with hip dysplasia, particularly for those in early stages of secondary OA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Despite the fact that new and modern short-stems allow bone sparing and saving of soft-tissue and muscles, we still face the challenge of anatomically reconstructing the femoro-acetabular offset and leg length. Therefore a radiological and clinical analysis of a short-stem reconstruction of the femoro-acetabular offset and leg length was performed. METHODS Using an antero-lateral approach, the optimys short-stem (Mathys Ltd, Bettlach, Switzerland) was implanted in 114 consecutive patients in combination with a cementless cup (Fitmore, Zimmer, Indiana, USA; vitamys RM Pressfit, Mathys Ltd, Bettlach, Switzerland). Pre- and postoperative X-rays were done in a standardized technique. In order to better analyse and compare X-ray data a special double coordinate system was developed for measuring femoral- and acetabular offset. Harris hip score was assessed before and six weeks after surgery. Visual analogue scale (VAS) satisfaction, leg length difference and the existence of gluteal muscle insufficiency were also examined. RESULTS Postoperative femoral offset was significantly increased by a mean of 5.8 mm. At the same time cup implantation significantly decreased the acetabular offset by a mean of 3.7 mm, which resulted in an increased combined femoro-acetabular offset of 2.1 mm. Postoperatively, 81.7 % of patients presented with equal leg length. The maximum discrepancy was 10 mm. Clinically, there were no signs of gluteal insufficiency. No luxation occurred during hospitalization. The Harris hip score improved from 47.3 before to 90.1 points already at six weeks after surgery while the mean VAS satisfaction was 9.1. CONCLUSION The analysis showed that loss of femoro-acetabular offset can be reduced with an appropriate stem design. Consequently, a good reconstruction of anatomy and leg length can be achieved. In the early postoperative stage the clinical results are excellent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Cam-type femoroacetabular impingement (FAI) resulting from an abnormal nonspherical femoral head shape leads to chondrolabral damage and is considered a cause of early osteoarthritis. A previously developed experimental ovine FAI model induces a cam-type impingement that results in localized chondrolabral damage, replicating the patterns found in the human hip. Biochemical MRI modalities such as T2 and T2* may allow for evaluation of the cartilage biochemistry long before cartilage loss occurs and, for that reason, may be a worthwhile avenue of inquiry. QUESTIONS/PURPOSES We asked: (1) Does the histological grading of degenerated cartilage correlate with T2 or T2* values in this ovine FAI model? (2) How accurately can zones of degenerated cartilage be predicted with T2 or T2* MRI in this model? METHODS A cam-type FAI was induced in eight Swiss alpine sheep by performing a closing wedge intertrochanteric varus osteotomy. After ambulation of 10 to 14 weeks, the sheep were euthanized and a 3-T MRI of the hip was performed. T2 and T2* values were measured at six locations on the acetabulum and compared with the histological damage pattern using the Mankin score. This is an established histological scoring system to quantify cartilage degeneration. Both T2 and T2* values are determined by cartilage water content and its collagen fiber network. Of those, the T2* mapping is a more modern sequence with technical advantages (eg, shorter acquisition time). Correlation of the Mankin score and the T2 and T2* values, respectively, was evaluated using the Spearman's rank correlation coefficient. We used a hierarchical cluster analysis to calculate the positive and negative predictive values of T2 and T2* to predict advanced cartilage degeneration (Mankin ≥ 3). RESULTS We found a negative correlation between the Mankin score and both the T2 (p < 0.001, r = -0.79) and T2* values (p < 0.001, r = -0.90). For the T2 MRI technique, we found a positive predictive value of 100% (95% confidence interval [CI], 79%-100%) and a negative predictive value of 84% (95% CI, 67%-95%). For the T2* technique, we found a positive predictive value of 100% (95% CI, 79%-100%) and a negative predictive value of 94% (95% CI, 79%-99%). CONCLUSIONS T2 and T2* MRI modalities can reliably detect early cartilage degeneration in the experimental ovine FAI model. CLINICAL RELEVANCE T2 and T2* MRI modalities have the potential to allow for monitoring the natural course of osteoarthrosis noninvasively and to evaluate the results of surgical treatments targeted to joint preservation.