28 resultados para Ruminal protozoa
Resumo:
In ruminal drinkers (RD) ingested milk is transported into the rumen and not into the abomasum. Because this is followed by changes in digestibility and absorption, we have tested whether this is associated with postprandial metabolic and endocrine changes. Unweaned, bucket-fed calves (one RD, two controls) were studied on seven farms. On d 1, after metabolic and endocrine 12-h profiles were studied, RD and one control calf were fed for 10 d by nipple, whereas the other control calf was fed by bucket. On d 11, metabolic and endocrine 12-h profiles were again studied. On d 1, mean plasma concentrations of glucose, triglycerides, urea, insulin, insulin-like growth factor-1 (IGF-1), 3,5,3'-triiodothyronine (T3), thyroxine (T4) and leptin were significantly different between RD and controls, whereas mean concentrations of non-esterified fatty acids (NEFA), total protein, albumin, and glucagon did not differ significantly among groups. In RD concentrations of glucose, NEFA, insulin, growth hormone, IGF-1, and T4 were higher, and of urea were lower on d 11 than on d 1. Glucose and insulin concentrations increased postprandially in healthy calves on d 1, but barely in RD and remained lower than in controls, and there was no rise of NEFA and triglyceride concentrations on d 1 after the initial postprandial decrease in RD, in contrast to controls. But on d 11 postprandial responses of these four traits were similar in RD and controls and urea and T4 concentrations on d 11 became normalized. However, glucose and T3 concentrations in RD on d 11 were still lower than in one or both control groups. In conclusion, various metabolic and endocrine traits in RD differed from healthy controls. Drinking by floating nipple instead of drinking from bucket for 10 d normalized several metabolic and endocrine traits in RD.
Resumo:
The aim of the present study was to measure transit patterns of nutrients and the absorptive ability in ruminal drinkers (RDs) compared with healthy unweaned calves. The acetaminophen (paracetamol) absorption test was used to characterize the oroduodenal transit rate. Clinical examination and the analysis of various blood parameters provided supplementary information on digestive processes. Three unweaned bucket-fed calves (one RD and two healthy controls) each from seven Swiss dairy farms were included in the study. Measurements (tests 1 and 2) were performed twice at an interval of 10 days. Between tests, the feeding technique of the RDs and one control calf per farm was changed to feeding with a nipple instead of by bucket (without nipple). Acetaminophen appearance in the blood was delayed and reduced in RDs compared with the controls. Acid-base metabolism and several haematological and metabolic parameters differed markedly between RDs and healthy controls. The characteristics of the oroduodenal transit rate, absorptive abilities and clinical status in RDs were nearly normalised within 10 days of reconditioning.
Resumo:
Stratigraphy, radiocarbon dating and analyses of pollen, plant macrofossils and testate amoebae were used to reconstruct the development and ecology of a small raised bog in a karst-dominated landscape in the Swiss Jura Mountains. Special focus was on past vegetation and on the history of Pinus rotundata in relation to anthropogenic and climatic influences. Testate amoebae were used to reconstruc-t past local soil pH and water-table depth. The inferred development of the Praz-Rodet bog typifies a classic hydroseral tefrestrialization of a small basin. Two features are specific for this site. First, the bog was much wetter than today for a long period; according to our hypothesis, this only changed as a consequence of human activities. Second, two hiatuses are present at the coring location (Younger Dryas--early Preboreal, and 4700-2800 cal. yr BP), the former probably caused by low lake productivity due to cold temperatures and the latter by the erosional activity of the adjacent small river. The date of 2800 cal. yr BP for renewed peat accumulation may be related to climatic change (Subboreal-Subatlantic transition). Pollen indicators failed to show one hiatus: an apparently complete pollen sequence is therefore no guarantee of an uninterrupted sediment accumulation. Evidence of early minor human impact on the vegetation in the Joux Valley dates back to c. 6850 calendar years, congruous with the early Neolithic in the Jura Mountains. The history of Pinuis rotindata appears to be more complex than previously believed. Human activity is clearly responsible for the present abundance of this species, but the tree was naturally present on the bog long before the first evidence of important human disturbance of the site (1500 cal. yr BP). It is suggested that, in karst-dominated landscapes, dense forests growing on mineral soils around raised bogs may significantly reduce summer evapotranspiration by acting as windbreaks. Forest clearance results in increased evapotranspiration, causing a lowering of the water table on the bog and a modification of the vegetation cover. This hypothesis has implications for the management of similar small raised bogs in karst-dominated landscape.
Resumo:
RNA editing in kinetoplastid protozoa is a post-transcriptional process of uridine insertion or deletion in mitochondrial mRNAs. The process involves two RNA species, the pre-edited mRNA and in most cases a trans-acting guide RNA (gRNA). Sequences within gRNAs define the position and extend of mRNA editing. Both mRNAs and gRNAs are encoded by mitochondrial genes in the kinetoplast DNA (kDNA), which consists of thousands of small circular DNA molecules, called minicircles, encoding thousands of gRNAs, catenated together and with a few mRNA encoding larger circles, the maxicircles, to form a huge DNA network. Editing has been shown to result in translatable mRNAs of bona fide mitochondrial genes as well as novel alternatively edited transcripts that are involved in the maintenance of the kDNA itself. RNA editing occurs within large protein-RNA complexes, editosomes, containing gRNA, preedited and partially edited mRNAs and also structural and catalytically active proteins. Editosomes are diverse in both RNA and protein composition and undergoe structural remodeling during the maturation. The compositional and structural diversity of editosomes further underscores the complexity of the RNA editing process.
Resumo:
Mitochondria are found in all eukaryotic cells and derive from a bacterial endosymbiont [1, 2]. The evolution of a protein import system was a prerequisite for the conversion of the endosymbiont into a true organelle. Tom40, the essential component of the protein translocase of the outer membrane, is conserved in mitochondria of almost all eukaryotes but lacks bacterial orthologs [3-6]. It serves as the gateway through which all mitochondrial proteins are imported. The parasitic protozoa Trypanosoma brucei and its relatives do not have a Tom40-like protein, which raises the question of how proteins are imported by their mitochondria [7, 8]. Using a combination of bioinformatics and in vivo and in vitro studies, we have discovered that T. brucei likely employs a different import channel, termed ATOM (archaic translocase of the outer mitochondria! membrane). ATOM mediates the import of nuclear-encoded proteins into mitochondria and is essential for viability of trypanosomes. It is not related to Tom40 but is instead an ortholog of a subgroup of the 0mp85 protein superfamily that is involved in membrane translocation and insertion of bacterial outer membrane proteins [9]. This suggests that the protein import channel in trypanosomes is a relic of an archaic protein transport system that was operational in the ancestor of all eukaryotes.
Resumo:
The mitochondrial genomes of most eukaryotes lack a variable number of tRNA genes. This lack is compensated for by import of a small fraction of the corresponding cytosolic tRNAs. There are two broad mechanisms for the import of tRNAs into mitochondria. In the first one, the tRNA is coimported together with a mitochondrial precursor protein along the protein import pathway. It applies to the yeast tRNA(Lys) and has been elucidated in great detail. In the second more vaguely defined mechanism, which is mainly found in plants and protozoa, tRNAs are directly imported independent of cytosolic factors. However, results in plants indicate that direct import of tRNAs may nevertheless require some components of the protein import machinery. All imported tRNAs in all systems are of the eukaryotic type but need to be functionally integrated into the mitochondrial translation system of bacterial descent. For some tRNAs, this is not trivial and requires unique evolutionary adaptations.
Resumo:
Nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) represents the parent compound of a novel class of broad-spectrum anti-parasitic compounds named thiazolides. NTZ is active against a wide variety of intestinal and tissue-dwelling helminths, protozoa, enteric bacteria and a number of viruses infecting animals and humans. While potent, this poses a problem in practice, since this obvious non-selectivity can lead to undesired side effects in both humans and animals. In this study, we used real time PCR to determine the in vitro activities of 29 different thiazolides (NTZ-derivatives), which carry distinct modifications on both the thiazole- and the benzene moieties, against the tachyzoite stage of the intracellular protozoan Neospora caninum. The goal was to identify a highly active compound lacking the undesirable nitro group, which would have a more specific applicability, such as in food animals. By applying self-organizing molecular field analysis (SOMFA), these data were used to develop a predictive model for future drug design. SOMFA performs self-alignment of the molecules, and takes into account the steric and electrostatic properties, in order to determine 3D-quantitative structure activity relationship models. The best model was obtained by overlay of the thiazole moieties. Plotting of predicted versus experimentally determined activity produced an r2 value of 0.8052 and cross-validation using the "leave one out" methodology resulted in a q2 value of 0.7987. A master grid map showed that large steric groups at the R2 position, the nitrogen of the amide bond and position Y could greatly reduce activity, and the presence of large steric groups placed at positions X, R4 and surrounding the oxygen atom of the amide bond, may increase the activity of thiazolides against Neospora caninum tachyzoites. The model obtained here will be an important predictive tool for future development of this important class of drugs.
Resumo:
The thiazolides represent a novel class of anti-infective drugs, with the nitrothiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] (NTZ) as the parent compound. NTZ exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. In vivo, NTZ is rapidly deacetylated to tizoxanide (TIZ), which exhibits similar activities. We have here comparatively investigated the in vitro effects of NTZ, TIZ, a number of other modified thiazolides, and metronidazole (MTZ) on Giardia lamblia trophozoites grown under axenic culture conditions and in coculture with the human cancer colon cell line Caco2. The modifications of the thiazolides included, on one hand, the replacement of the nitro group on the thiazole ring with a bromide, and, on the other hand, the differential positioning of methyl groups on the benzene ring. Of seven compounds with a bromo instead of a nitro group, only one, RM4820, showed moderate inhibition of Giardia proliferation in axenic culture, but not in coculture with Caco2 cells, with a 50% inhibitory concentration (IC50) of 18.8 microM; in comparison, NTZ and tizoxanide had IC50s of 2.4 microM, and MTZ had an IC50 of 7.8 microM. Moreover, the methylation or carboxylation of the benzene ring at position 3 resulted in a significant decrease of activity, and methylation at position 5 completely abrogated the antiparasitic effect of the nitrothiazole compound. Trophozoites treated with NTZ showed distinct lesions on the ventral disk as soon as 2 to 3 h after treatment, whereas treatment with metronidazole resulted in severe damage to the dorsal surface membrane at later time points.
Resumo:
Colonisation of the gastrointestinal tract by anaerobic bacteria, protozoa, trematodes, cestodes and/or nematodes and other infectious pathogens, including viruses, represents a major cause of morbidity and mortality in Africa, South America and southeast Asia, as well as other parts of the world. Nitazoxanide is a member of the thiazolide class of drugs with a documented broad spectrum of activity against parasites and anaerobic bacteria. Moreover, the drug has recently been reported to have a profound activity against hepatitis C virus infection. In addition, nitazoxanide exhibits anti-inflammatory properties, which have prompted clinical investigations for its use in Crohn's disease. Studies with nitazoxanide derivatives have determined that there must be significantly different mechanisms of action acting on intracellular versus extracellular pathogens. An impressive number of clinical studies have shown that the drug has an excellent bioavailability in the gastrointestinal tract, is fast acting and highly effective against gastrointestinal bacteria, protozoa and helminthes. A recent Phase II study has demonstrated viral response (hepatitis C) to monotherapy, with a low toxicity and an excellent safety profile over 24 weeks of treatment. Pre-clinical studies have indicated that there is a potential for application of this drug against other diseases, not primarily affecting the liver or the gastrointestinal tract.
Resumo:
Background Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. Results This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs) from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range. Several PDE inhibitors were found to be active against these PDEs in vitro, and to inhibit cell proliferation. Conclusion The genome of L. major contains only PDE genes that are predicted to code for class I PDEs, and none for class II PDEs. This is more similar to what is found in higher eukaryotes than it is to the situation in Dictyostelium or the fungi that concomitantly express class I and class II PDEs. Functional complementation demonstrated that LmjPDEA, LmjPDEB1 and LmjPDEB2 are capable of hydrolyzing cAMP. In vitro studies with recombinant LmjPDEB1 and LmjPDEB2 confirmed this, and they demonstrated that both are completely cAMP-specific. Both enzymes are inhibited by several commercially available PDE inhibitors. The observation that these inhibitors also interfere with cell growth in culture indicates that inhibition of the PDEs is fatal for the cell, suggesting an important role of cAMP signalling for the maintenance of cellular integrity and proliferation.
Resumo:
Rumen-cannulated cows (n = 4) were fed successively silage made from either conventional or genetically modified (GM) maize. Results revealed no effects of GM maize on the dynamics of six ruminal bacterial strains (investigated by real-time PCR) compared to the conventional maize silage.
Resumo:
OBJECTIVES: The characterization of Giardia lamblia WB C6 strains resistant to metronidazole and to the nitro-thiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] as the parent compound of thiazolides, a novel class of anti-infective drugs with a broad spectrum of activities against a wide variety of helminths, protozoa and enteric bacteria. METHODS: Issuing from G. lamblia WB C6, we have generated two strains exhibiting resistance to nitazoxanide (strain C4) and to metronidazole (strain C5) and determined their susceptibilities to both drugs. Using quantitative RT-PCR, we have analysed the expression of genes that are potentially involved in resistance formation, namely genes encoding pyruvate oxidoreductases (POR1 and POR2), nitroreductase (NR), protein disulphide isomerases (PDI2 and PDI4) and variant surface proteins (VSPs; TSA417). We have cloned and expressed PDI2 and PDI4 in Escherichia coli. Using an enzyme assay based on the polymerization of insulin, we have determined the activities of both enzymes in the presence and absence of nitazoxanide. RESULTS: Whereas C4 was cross-resistant to nitazoxanide and to metronidazole, C5 was resistant only to metronidazole. Transcript levels of the potential targets for nitro-drugs POR1, POR2 and NR were only slightly modified, PDI2 transcript levels were increased in both resistant strains and PDI4 levels in C4. This correlated with the findings that the functional activities of recombinant PDI2 and PDI4 were inhibited by nitazoxanide. Moreover, drastic changes were observed in VSP gene expression. CONCLUSIONS: These results suggest that resistance formation in Giardia against nitazoxanide and metronidazole is linked, and possibly mediated by, altered gene expression in drug-resistant strains compared with non-resistant strains of Giardia.
Resumo:
The nitrothiazole analogue nitazoxanide [NTZ; 2-acetolyloxy-N-(5-nitro-2-thiazolyl)benzamide] represents the parent compound of a class of drugs referred to as thiazolides and exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. NTZ and other thiazolides are active against a wide range of other intracellular and extracellular protozoan parasites in vitro and in vivo, but their mode of action and respective subcellular target(s) have only recently been investigated. In order to identify potential targets of NTZ and other thiazolides in Giardia lamblia trophozoites, we have developed an affinity chromatography system using the deacetylated derivative of NTZ, tizoxanide (TIZ), as a ligand. Affinity chromatography on TIZ-agarose using cell extracts of G. lamblia trophozoites resulted in the isolation of an approximately 35-kDa polypeptide, which was identified by mass spectrometry as a nitroreductase (NR) homologue (EAA43030.1). NR was overexpressed as a six-histidine-tagged recombinant protein in Escherichia coli, purified, and then characterized using an assay for oxygen-insensitive NRs with dinitrotoluene as a substrate. This demonstrated that the NR was functionally active, and the protein was designated GlNR1. In this assay system, NR activity was severely inhibited by NTZ and other thiazolides, demonstrating that the antigiardial activity of these drugs could be, at least partially, mediated through inhibition of GlNR1.
Resumo:
In the United States, rumenocentesis has been recommended especially for early diagnosis of subacute rumen acidosis (SARA). The objective of the current study was to evaluate health risks due to the technique ofrumenocentesis and to measure pH in ruminal juice using a commercial indicator paper (Pehanon) and a pH electrode (reference method). After 11 dairy cows underwent rumenocentesis, the clinical status of those animals was evaluated daily, and cows were slaughtered as well as pathologically--anatomically examined on day 7. During the observation period, the following pathological clinical signs were evident: forced inspiration (3 cows), transient episode of hyperthermia (2 cows), increased tension of the abdominal wall (8 cows) and positive foreign body tests (3 cows). One cow had to be culled on day 7 because of severe generalised septic peritonitis spreading from the site of rumenocentesis. At slaughter, hematoma formation in the area of the puncture site was found in 9 out of 10 cows. It was concluded that the severe complications encountered with this technique do not legitimate rumenocentesis as a routine procedure for collection of rumen juice samples in cows under Swiss conditions. The correlation between the pH reference method and the commercial indicator paper was the high (r = 0.926).
Resumo:
Flagellar-mediated motility is an indispensable function for cell types as evolutionarily distant as mammalian sperm and kinetoplastid parasites, a large group of flagellated protozoa that includes several important human pathogens. Despite the obvious importance of flagellar motility, little is known about the signalling processes that direct the frequency and wave shape of the flagellar beat, or those that provide the motile cell with the necessary environmental cues that enable it to aim its movement. Similarly, the energetics of the flagellar beat and the problem of a sufficient ATP supply along the entire length of the beating flagellum remain to be explored. Recent proteome projects studying the flagella of mammalian sperm and kinetoplastid parasites have provided important information and have indicated a surprising degree of similarities between the flagella of these two cell types.